Author: Dimitris G. Angelakis
Publisher: Springer
ISBN: 3319520253
Category : Science
Languages : en
Pages : 220
Book Description
This book reviews progress towards quantum simulators based on photonic and hybrid light-matter systems, covering theoretical proposals and recent experimental work. Quantum simulators are specially designed quantum computers. Their main aim is to simulate and understand complex and inaccessible quantum many-body phenomena found or predicted in condensed matter physics, materials science and exotic quantum field theories. Applications will include the engineering of smart materials, robust optical or electronic circuits, deciphering quantum chemistry and even the design of drugs. Technological developments in the fields of interfacing light and matter, especially in many-body quantum optics, have motivated recent proposals for quantum simulators based on strongly correlated photons and polaritons generated in hybrid light-matter systems. The latter have complementary strengths to cold atom and ion based simulators and they can probe for example out of equilibrium phenomena in a natural driven-dissipative setting. This book covers some of the most important works in this area reviewing the proposal for Mott transitions and Luttinger liquid physics with light, to simulating interacting relativistic theories, topological insulators and gauge field physics. The stage of the field now is at a point where on top of the numerous theory proposals; experiments are also reported. Connecting to the theory proposals presented in the chapters, the main experimental quantum technology platforms developed from groups worldwide to realize photonic and polaritonic simulators in the laboratory are also discussed. These include coupled microwave resonator arrays in superconducting circuits, semiconductor based polariton systems, and integrated quantum photonic chips. This is the first book dedicated to photonic approaches to quantum simulation, reviewing the fundamentals for the researcher new to the field, and providing a complete reference for the graduate student starting or already undergoing PhD studies in this area.
Quantum Simulations with Photons and Polaritons
Author: Dimitris G. Angelakis
Publisher: Springer
ISBN: 3319520253
Category : Science
Languages : en
Pages : 220
Book Description
This book reviews progress towards quantum simulators based on photonic and hybrid light-matter systems, covering theoretical proposals and recent experimental work. Quantum simulators are specially designed quantum computers. Their main aim is to simulate and understand complex and inaccessible quantum many-body phenomena found or predicted in condensed matter physics, materials science and exotic quantum field theories. Applications will include the engineering of smart materials, robust optical or electronic circuits, deciphering quantum chemistry and even the design of drugs. Technological developments in the fields of interfacing light and matter, especially in many-body quantum optics, have motivated recent proposals for quantum simulators based on strongly correlated photons and polaritons generated in hybrid light-matter systems. The latter have complementary strengths to cold atom and ion based simulators and they can probe for example out of equilibrium phenomena in a natural driven-dissipative setting. This book covers some of the most important works in this area reviewing the proposal for Mott transitions and Luttinger liquid physics with light, to simulating interacting relativistic theories, topological insulators and gauge field physics. The stage of the field now is at a point where on top of the numerous theory proposals; experiments are also reported. Connecting to the theory proposals presented in the chapters, the main experimental quantum technology platforms developed from groups worldwide to realize photonic and polaritonic simulators in the laboratory are also discussed. These include coupled microwave resonator arrays in superconducting circuits, semiconductor based polariton systems, and integrated quantum photonic chips. This is the first book dedicated to photonic approaches to quantum simulation, reviewing the fundamentals for the researcher new to the field, and providing a complete reference for the graduate student starting or already undergoing PhD studies in this area.
Publisher: Springer
ISBN: 3319520253
Category : Science
Languages : en
Pages : 220
Book Description
This book reviews progress towards quantum simulators based on photonic and hybrid light-matter systems, covering theoretical proposals and recent experimental work. Quantum simulators are specially designed quantum computers. Their main aim is to simulate and understand complex and inaccessible quantum many-body phenomena found or predicted in condensed matter physics, materials science and exotic quantum field theories. Applications will include the engineering of smart materials, robust optical or electronic circuits, deciphering quantum chemistry and even the design of drugs. Technological developments in the fields of interfacing light and matter, especially in many-body quantum optics, have motivated recent proposals for quantum simulators based on strongly correlated photons and polaritons generated in hybrid light-matter systems. The latter have complementary strengths to cold atom and ion based simulators and they can probe for example out of equilibrium phenomena in a natural driven-dissipative setting. This book covers some of the most important works in this area reviewing the proposal for Mott transitions and Luttinger liquid physics with light, to simulating interacting relativistic theories, topological insulators and gauge field physics. The stage of the field now is at a point where on top of the numerous theory proposals; experiments are also reported. Connecting to the theory proposals presented in the chapters, the main experimental quantum technology platforms developed from groups worldwide to realize photonic and polaritonic simulators in the laboratory are also discussed. These include coupled microwave resonator arrays in superconducting circuits, semiconductor based polariton systems, and integrated quantum photonic chips. This is the first book dedicated to photonic approaches to quantum simulation, reviewing the fundamentals for the researcher new to the field, and providing a complete reference for the graduate student starting or already undergoing PhD studies in this area.
Optics in Our Time
Author: Mohammad D. Al-Amri
Publisher: Springer
ISBN: 3319319035
Category : Science
Languages : en
Pages : 509
Book Description
Light and light based technologies have played an important role in transforming our lives via scientific contributions spanned over thousands of years. In this book we present a vast collection of articles on various aspects of light and its applications in the contemporary world at a popular or semi-popular level. These articles are written by the world authorities in their respective fields. This is therefore a rare volume where the world experts have come together to present the developments in this most important field of science in an almost pedagogical manner. This volume covers five aspects related to light. The first presents two articles, one on the history of the nature of light, and the other on the scientific achievements of Ibn-Haitham (Alhazen), who is broadly considered the father of modern optics. These are then followed by an article on ultrafast phenomena and the invisible world. The third part includes papers on specific sources of light, the discoveries of which have revolutionized optical technologies in our lifetime. They discuss the nature and the characteristics of lasers, Solid-state lighting based on the Light Emitting Diode (LED) technology, and finally modern electron optics and its relationship to the Muslim golden age in science. The book’s fourth part discusses various applications of optics and light in today's world, including biophotonics, art, optical communication, nanotechnology, the eye as an optical instrument, remote sensing, and optics in medicine. In turn, the last part focuses on quantum optics, a modern field that grew out of the interaction of light and matter. Topics addressed include atom optics, slow, stored and stationary light, optical tests of the foundation of physics, quantum mechanical properties of light fields carrying orbital angular momentum, quantum communication, and Wave-Particle dualism in action.
Publisher: Springer
ISBN: 3319319035
Category : Science
Languages : en
Pages : 509
Book Description
Light and light based technologies have played an important role in transforming our lives via scientific contributions spanned over thousands of years. In this book we present a vast collection of articles on various aspects of light and its applications in the contemporary world at a popular or semi-popular level. These articles are written by the world authorities in their respective fields. This is therefore a rare volume where the world experts have come together to present the developments in this most important field of science in an almost pedagogical manner. This volume covers five aspects related to light. The first presents two articles, one on the history of the nature of light, and the other on the scientific achievements of Ibn-Haitham (Alhazen), who is broadly considered the father of modern optics. These are then followed by an article on ultrafast phenomena and the invisible world. The third part includes papers on specific sources of light, the discoveries of which have revolutionized optical technologies in our lifetime. They discuss the nature and the characteristics of lasers, Solid-state lighting based on the Light Emitting Diode (LED) technology, and finally modern electron optics and its relationship to the Muslim golden age in science. The book’s fourth part discusses various applications of optics and light in today's world, including biophotonics, art, optical communication, nanotechnology, the eye as an optical instrument, remote sensing, and optics in medicine. In turn, the last part focuses on quantum optics, a modern field that grew out of the interaction of light and matter. Topics addressed include atom optics, slow, stored and stationary light, optical tests of the foundation of physics, quantum mechanical properties of light fields carrying orbital angular momentum, quantum communication, and Wave-Particle dualism in action.
Cavity Polaritons
Author: Alexey Kavokin
Publisher: Elsevier
ISBN: 008048137X
Category : Technology & Engineering
Languages : en
Pages : 248
Book Description
Volume 32 of the series addresses one of the most rapidly developing research fields in physics: microcavities. Microcavities form a base for fabrication of opto-electronic devices of XXI century, in particular polariton lasers based on a new physical principle with respect to conventional lasers proposed by Einstein in 1917. This book overviews a theory of all major phenomena linked microcavities and exciton-polaritons and is oriented to the reader having no background in solid state theory as well as to the advanced readers interested in theory of exciton-polaritons in microcavities. All major experimental discoveries in the field are addressed as well.·The book is oriented to a general reader and is easy to read for a non-specialist.·Contains an overview of the most essential effects in physics of microcavities experimentally observed and theoretically predicted during the recent decade such as:. ·Bose-Einstein condensation at room temperature.·Lasers without inversion of population.·Microcavity boom: optics of the XXI century!·Frequently asked questions on microcavities and responses without formulas. ·Half-light-half-matter quasi-particles: base for the future optoelectronic devices
Publisher: Elsevier
ISBN: 008048137X
Category : Technology & Engineering
Languages : en
Pages : 248
Book Description
Volume 32 of the series addresses one of the most rapidly developing research fields in physics: microcavities. Microcavities form a base for fabrication of opto-electronic devices of XXI century, in particular polariton lasers based on a new physical principle with respect to conventional lasers proposed by Einstein in 1917. This book overviews a theory of all major phenomena linked microcavities and exciton-polaritons and is oriented to the reader having no background in solid state theory as well as to the advanced readers interested in theory of exciton-polaritons in microcavities. All major experimental discoveries in the field are addressed as well.·The book is oriented to a general reader and is easy to read for a non-specialist.·Contains an overview of the most essential effects in physics of microcavities experimentally observed and theoretically predicted during the recent decade such as:. ·Bose-Einstein condensation at room temperature.·Lasers without inversion of population.·Microcavity boom: optics of the XXI century!·Frequently asked questions on microcavities and responses without formulas. ·Half-light-half-matter quasi-particles: base for the future optoelectronic devices
Physics Briefs
Author:
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 1206
Book Description
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 1206
Book Description
Plasmonics: Fundamentals and Applications
Author: Stefan Alexander Maier
Publisher: Springer Science & Business Media
ISBN: 0387378251
Category : Technology & Engineering
Languages : en
Pages : 234
Book Description
Considered a major field of photonics, plasmonics offers the potential to confine and guide light below the diffraction limit and promises a new generation of highly miniaturized photonic devices. This book combines a comprehensive introduction with an extensive overview of the current state of the art. Coverage includes plasmon waveguides, cavities for field-enhancement, nonlinear processes and the emerging field of active plasmonics studying interactions of surface plasmons with active media.
Publisher: Springer Science & Business Media
ISBN: 0387378251
Category : Technology & Engineering
Languages : en
Pages : 234
Book Description
Considered a major field of photonics, plasmonics offers the potential to confine and guide light below the diffraction limit and promises a new generation of highly miniaturized photonic devices. This book combines a comprehensive introduction with an extensive overview of the current state of the art. Coverage includes plasmon waveguides, cavities for field-enhancement, nonlinear processes and the emerging field of active plasmonics studying interactions of surface plasmons with active media.
Microcavities
Author: Alexey Kavokin
Publisher: OUP Oxford
ISBN: 0191620734
Category : Science
Languages : en
Pages : 487
Book Description
Rapid development of microfabrication and assembly of nanostructures has opened up many opportunities to miniaturize structures that confine light, producing unusual and extremely interesting optical properties. This book addresses the large variety of optical phenomena taking place in confined solid state structures: microcavities. Realisations include planar and pillar microcavities, whispering gallery modes, and photonic crystals. The microcavities represent a unique laboratory for quantum optics and photonics. They exhibit a number of beautiful effects including lasing, superfluidity, superradiance, entanglement etc. Written by four practitioners strongly involved in experiments and theories of microcavities, it is addressed to any interested reader having a general physical background, but in particular to undergraduate and graduate students at physics faculties.
Publisher: OUP Oxford
ISBN: 0191620734
Category : Science
Languages : en
Pages : 487
Book Description
Rapid development of microfabrication and assembly of nanostructures has opened up many opportunities to miniaturize structures that confine light, producing unusual and extremely interesting optical properties. This book addresses the large variety of optical phenomena taking place in confined solid state structures: microcavities. Realisations include planar and pillar microcavities, whispering gallery modes, and photonic crystals. The microcavities represent a unique laboratory for quantum optics and photonics. They exhibit a number of beautiful effects including lasing, superfluidity, superradiance, entanglement etc. Written by four practitioners strongly involved in experiments and theories of microcavities, it is addressed to any interested reader having a general physical background, but in particular to undergraduate and graduate students at physics faculties.
Polariton Chemistry
Author: Joel Yuen-Zhou
Publisher:
ISBN: 9781119783299
Category :
Languages : en
Pages : 452
Book Description
This book provides a pedagogical introduction to the emerging field of Polariton Chemistry, where optical cavities are utilized to control the physicochemical properties and dynamics of molecular systems. Given the early stages of this interdisciplinary research area, it is important to provide a common language and starting point for interested researchers across Chemistry, Physics, and Engineering This edited compendium fills a void given that there is currently no analogue in the current literature. Topics covered include Single-Molecule Strong Light-Matter Coupling; Collective Strong Light-Matter Coupling; and Ultrastrong Light-Matter Coupling
Publisher:
ISBN: 9781119783299
Category :
Languages : en
Pages : 452
Book Description
This book provides a pedagogical introduction to the emerging field of Polariton Chemistry, where optical cavities are utilized to control the physicochemical properties and dynamics of molecular systems. Given the early stages of this interdisciplinary research area, it is important to provide a common language and starting point for interested researchers across Chemistry, Physics, and Engineering This edited compendium fills a void given that there is currently no analogue in the current literature. Topics covered include Single-Molecule Strong Light-Matter Coupling; Collective Strong Light-Matter Coupling; and Ultrastrong Light-Matter Coupling
Confined Electrons and Photons
Author: Elias Burstein
Publisher: Springer Science & Business Media
ISBN: 1461519632
Category : Science
Languages : en
Pages : 900
Book Description
The optical properties of semiconductors have played an important role since the identification of semiconductors as "small" bandgap materials in the thinies, due both to their fundamental interest as a class of solids baving specific optical propenies and to their many important applications. On the former aspect we can cite the fundamental edge absorption and its assignment to direct or indirect transitions, many-body effects as revealed by exciton formation and photoconductivity. On the latter aspect, large-scale applications sucb as LEDs and lasers, photovoltaic converters, photodetectors, electro-optics and non-linear optic devices, come to mind. The eighties saw a revitalization of the whole field due to the advent of heterostructures of lower-dimensionality, mainly two-dimensional quantum wells, which through their enhanced photon-matter interaction yielded new devices with unsurpassed performance. Although many of the basic phenomena were evidenced through the seventies, it was this impact on applications which in turn led to such a massive investment in fabrication tools, thanks to which many new structures and materials were studied, yielding funher advances in fundamental physics.
Publisher: Springer Science & Business Media
ISBN: 1461519632
Category : Science
Languages : en
Pages : 900
Book Description
The optical properties of semiconductors have played an important role since the identification of semiconductors as "small" bandgap materials in the thinies, due both to their fundamental interest as a class of solids baving specific optical propenies and to their many important applications. On the former aspect we can cite the fundamental edge absorption and its assignment to direct or indirect transitions, many-body effects as revealed by exciton formation and photoconductivity. On the latter aspect, large-scale applications sucb as LEDs and lasers, photovoltaic converters, photodetectors, electro-optics and non-linear optic devices, come to mind. The eighties saw a revitalization of the whole field due to the advent of heterostructures of lower-dimensionality, mainly two-dimensional quantum wells, which through their enhanced photon-matter interaction yielded new devices with unsurpassed performance. Although many of the basic phenomena were evidenced through the seventies, it was this impact on applications which in turn led to such a massive investment in fabrication tools, thanks to which many new structures and materials were studied, yielding funher advances in fundamental physics.
Hyperbolic Metamaterials
Author: Igor I Smolyaninov
Publisher: Morgan & Claypool Publishers
ISBN: 1681745658
Category : Technology & Engineering
Languages : en
Pages : 81
Book Description
Hyperbolic metamaterials were originally introduced to overcome the diffraction limit of optical imaging. Soon thereafter it was realized that hyperbolic metamaterials demonstrate a number of novel phenomena resulting from the broadband singular behavior of their density of photonic states. These novel phenomena and applications include super resolution imaging, new stealth technologies, enhanced quantum-electrodynamic effects, thermal hyperconductivity, superconductivity, and interesting gravitation theory analogs. Here I review typical material systems, which exhibit hyperbolic behavior and outline important new applications of hyperbolic metamaterials, such as imaging experiments with plasmonic hyperbolic metamaterials and novel VCSEL geometries, in which the Bragg mirrors may be engineered in such a way that they exhibit hyperbolic properties in the long wavelength infrared range, so that they may be used to efficiently remove excess heat from the laser cavity. I will also discuss potential applications of self-assembled photonic hypercrystals. This system bypasses 3D nanofabrication issues, which typically limit hyperbolic metamaterial applications. Photonic hypercrystals combine the most interesting features of hyperbolic metamaterials and photonic crystals.
Publisher: Morgan & Claypool Publishers
ISBN: 1681745658
Category : Technology & Engineering
Languages : en
Pages : 81
Book Description
Hyperbolic metamaterials were originally introduced to overcome the diffraction limit of optical imaging. Soon thereafter it was realized that hyperbolic metamaterials demonstrate a number of novel phenomena resulting from the broadband singular behavior of their density of photonic states. These novel phenomena and applications include super resolution imaging, new stealth technologies, enhanced quantum-electrodynamic effects, thermal hyperconductivity, superconductivity, and interesting gravitation theory analogs. Here I review typical material systems, which exhibit hyperbolic behavior and outline important new applications of hyperbolic metamaterials, such as imaging experiments with plasmonic hyperbolic metamaterials and novel VCSEL geometries, in which the Bragg mirrors may be engineered in such a way that they exhibit hyperbolic properties in the long wavelength infrared range, so that they may be used to efficiently remove excess heat from the laser cavity. I will also discuss potential applications of self-assembled photonic hypercrystals. This system bypasses 3D nanofabrication issues, which typically limit hyperbolic metamaterial applications. Photonic hypercrystals combine the most interesting features of hyperbolic metamaterials and photonic crystals.
The Quartz Crystal Microbalance in Soft Matter Research
Author: Diethelm Johannsmann
Publisher: Springer
ISBN: 3319078364
Category : Science
Languages : en
Pages : 398
Book Description
This book describes the physics of the second-generation quartz crystal microbalance (QCM), a fundamental method of analysis for soft matter at interfaces. From a device for measuring film thickness in vacuum, the quartz crystal microbalance (QCM) has in the past two decades evolved into a versatile instrument for analyzing soft matter at solid/liquid and solid/gas interfaces that found applications in diverse fields including the life sciences, material science, polymer research and electrochemistry. As a consequence of this success, the QCM is now being used by scientists with a wide variety of backgrounds to study an impressive diversity of samples, with intricate data analysis methods being elaborated along the way. It is for these practitioners of the QCM that the book is written. It brings across basic principles behind the technique and the data analysis methods in sufficient detail to be educational and in a format that is accessible to anyone with an undergraduate level knowledge of any of the physical or natural sciences. These principles concern the analysis of acoustic shear waves and build on a number of fundamental physical concepts which many users of the technique do not usually come across. They have counterparts in optical spectroscopy, electrical engineering, quantum mechanics, rheology and mechanics, making this book a useful educational resource beyond the QCM itself. The main focus is the physics of QCM, but as the book describes the behavior of the QCM when exposed to films, droplets, polymer brushes, particles, vesicles, nanobubbles and stick-slip, it also offers insight into the behavior of soft matter at interfaces in a more general sense.
Publisher: Springer
ISBN: 3319078364
Category : Science
Languages : en
Pages : 398
Book Description
This book describes the physics of the second-generation quartz crystal microbalance (QCM), a fundamental method of analysis for soft matter at interfaces. From a device for measuring film thickness in vacuum, the quartz crystal microbalance (QCM) has in the past two decades evolved into a versatile instrument for analyzing soft matter at solid/liquid and solid/gas interfaces that found applications in diverse fields including the life sciences, material science, polymer research and electrochemistry. As a consequence of this success, the QCM is now being used by scientists with a wide variety of backgrounds to study an impressive diversity of samples, with intricate data analysis methods being elaborated along the way. It is for these practitioners of the QCM that the book is written. It brings across basic principles behind the technique and the data analysis methods in sufficient detail to be educational and in a format that is accessible to anyone with an undergraduate level knowledge of any of the physical or natural sciences. These principles concern the analysis of acoustic shear waves and build on a number of fundamental physical concepts which many users of the technique do not usually come across. They have counterparts in optical spectroscopy, electrical engineering, quantum mechanics, rheology and mechanics, making this book a useful educational resource beyond the QCM itself. The main focus is the physics of QCM, but as the book describes the behavior of the QCM when exposed to films, droplets, polymer brushes, particles, vesicles, nanobubbles and stick-slip, it also offers insight into the behavior of soft matter at interfaces in a more general sense.