Simulating, Analyzing, and Animating Dynamical Systems

Simulating, Analyzing, and Animating Dynamical Systems PDF Author: Bard Ermentrout
Publisher: SIAM
ISBN: 9780898718195
Category : Mathematics
Languages : en
Pages : 304

Get Book Here

Book Description
Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students provides sophisticated numerical methods for the fast and accurate solution of a variety of equations, including ordinary differential equations, delay equations, integral equations, functional equations, and some partial differential equations, as well as boundary value problems. It introduces many modeling techniques and methods for analyzing the resulting equations.

Simulating, Analyzing, and Animating Dynamical Systems

Simulating, Analyzing, and Animating Dynamical Systems PDF Author: Bard Ermentrout
Publisher: SIAM
ISBN: 9780898718195
Category : Mathematics
Languages : en
Pages : 304

Get Book Here

Book Description
Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students provides sophisticated numerical methods for the fast and accurate solution of a variety of equations, including ordinary differential equations, delay equations, integral equations, functional equations, and some partial differential equations, as well as boundary value problems. It introduces many modeling techniques and methods for analyzing the resulting equations.

Numerical Continuation Methods for Dynamical Systems

Numerical Continuation Methods for Dynamical Systems PDF Author: Bernd Krauskopf
Publisher: Springer
ISBN: 1402063563
Category : Science
Languages : en
Pages : 399

Get Book Here

Book Description
Path following in combination with boundary value problem solvers has emerged as a continuing and strong influence in the development of dynamical systems theory and its application. It is widely acknowledged that the software package AUTO - developed by Eusebius J. Doedel about thirty years ago and further expanded and developed ever since - plays a central role in the brief history of numerical continuation. This book has been compiled on the occasion of Sebius Doedel's 60th birthday. Bringing together for the first time a large amount of material in a single, accessible source, it is hoped that the book will become the natural entry point for researchers in diverse disciplines who wish to learn what numerical continuation techniques can achieve. The book opens with a foreword by Herbert B. Keller and lecture notes by Sebius Doedel himself that introduce the basic concepts of numerical bifurcation analysis. The other chapters by leading experts discuss continuation for various types of systems and objects and showcase examples of how numerical bifurcation analysis can be used in concrete applications. Topics that are treated include: interactive continuation tools, higher-dimensional continuation, the computation of invariant manifolds, and continuation techniques for slow-fast systems, for symmetric Hamiltonian systems, for spatially extended systems and for systems with delay. Three chapters review physical applications: the dynamics of a SQUID, global bifurcations in laser systems, and dynamics and bifurcations in electronic circuits.

Modeling, Identification and Simulation of Dynamical Systems

Modeling, Identification and Simulation of Dynamical Systems PDF Author: P. P. J. van den Bosch
Publisher: CRC Press
ISBN: 0429605927
Category : Mathematics
Languages : en
Pages : 212

Get Book Here

Book Description
This book gives an in-depth introduction to the areas of modeling, identification, simulation, and optimization. These scientific topics play an increasingly dominant part in many engineering areas such as electrotechnology, mechanical engineering, aerospace, and physics. This book represents a unique and concise treatment of the mutual interactions among these topics. Techniques for solving general nonlinear optimization problems as they arise in identification and many synthesis and design methods are detailed. The main points in deriving mathematical models via prior knowledge concerning the physics describing a system are emphasized. Several chapters discuss the identification of black-box models. Simulation is introduced as a numerical tool for calculating time responses of almost any mathematical model. The last chapter covers optimization, a generally applicable tool for formulating and solving many engineering problems.

Dynamical Systems, PDEs and Networks for Biomedical Applications: Mathematical Modeling, Analysis and Simulations

Dynamical Systems, PDEs and Networks for Biomedical Applications: Mathematical Modeling, Analysis and Simulations PDF Author: André H. Erhardt
Publisher: Frontiers Media SA
ISBN: 2832514588
Category : Science
Languages : en
Pages : 209

Get Book Here

Book Description


Modeling, Simulation and Control of Nonlinear Engineering Dynamical Systems

Modeling, Simulation and Control of Nonlinear Engineering Dynamical Systems PDF Author: Jan Awrejcewicz
Publisher: Springer Science & Business Media
ISBN: 1402087780
Category : Technology & Engineering
Languages : en
Pages : 336

Get Book Here

Book Description
This volume contains the invited papers presented at the 9th International Conference "Dynamical Systems — Theory and Applications" held in Lódz, Poland, December 17-20, 2007, dealing with nonlinear dynamical systems. The conference brought together a large group of outstanding scientists and engineers, who deal with various problems of dynamics encountered both in engineering and in daily life. Topics covered include, among others, bifurcations and chaos in mechanical systems; control in dynamical systems; asymptotic methods in nonlinear dynamics; stability of dynamical systems; lumped and continuous systems vibrations; original numerical methods of vibration analysis; and man-machine interactions. Thus, the reader is given an overview of the most recent developments of dynamical systems and can follow the newest trends in this field of science. This book will be of interest to to pure and applied scientists working in the field of nonlinear dynamics.

Dynamical Systems in Neuroscience

Dynamical Systems in Neuroscience PDF Author: Eugene M. Izhikevich
Publisher: MIT Press
ISBN: 0262514206
Category : Medical
Languages : en
Pages : 459

Get Book Here

Book Description
Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.

Computational Electrophysiology

Computational Electrophysiology PDF Author: Shinji Doi
Publisher: Springer Science & Business Media
ISBN: 4431538623
Category : Technology & Engineering
Languages : en
Pages : 159

Get Book Here

Book Description
Biological systems inherently possess much ambiguity or uncertainty. Computational electrophysiology is the one area, from among the vast and rapidly growing discipline of computational and systems biology, in which computational or mathematical models have succeeded. This textbook provides a practical and quick guide to both computational electrophysiology and numerical bifurcation analysis. Bifurcation analysis is a very powerful tool for the analysis of such highly nonlinear biological systems. Bifurcation theory provides a way to analyze the effect of a parameter change on a system and to detect a critical parameter value when the qualitative nature of the system changes. Included in this work are many examples of numerical computations of bifurcation analysis of various models as well as mathematical models with different abstraction levels from neuroscience and electrophysiology. This volume will benefit graduate and undergraduate students as well as researchers in diverse fields of science.

Computational Intelligence in Bioinformatics

Computational Intelligence in Bioinformatics PDF Author: Arpad Kelemen
Publisher: Springer Science & Business Media
ISBN: 3540768025
Category : Computers
Languages : en
Pages : 337

Get Book Here

Book Description
Bioinformatics involve the creation and advancement of algorithms using techniques including computational intelligence, applied mathematics and statistics, informatics, and biochemistry to solve biological problems usually on the molecular level. This book deals with the application of computational intelligence in bioinformatics. Addressing the various issues of bioinformatics using different computational intelligence approaches is the novelty of this edited volume.

Controlling Delayed Dynamics

Controlling Delayed Dynamics PDF Author: Dimitri Breda
Publisher: Springer Nature
ISBN: 3031011295
Category : Science
Languages : en
Pages : 369

Get Book Here

Book Description
This book gathers contributions on analytical, numerical, and application aspects of time-delay systems, under the paradigm of control theory, and discusses recent advances in these different contexts, also highlighting the interdisciplinary connections. The book will serve as a useful tool for graduate students and researchers in the fields of dynamical systems, automatic control, numerical methods, and functional analysis.

Modeling and Analysis of Bio-molecular Networks

Modeling and Analysis of Bio-molecular Networks PDF Author: Jinhu Lü
Publisher: Springer Nature
ISBN: 981159144X
Category : Science
Languages : en
Pages : 464

Get Book Here

Book Description
This book addresses a number of questions from the perspective of complex systems: How can we quantitatively understand the life phenomena? How can we model life systems as complex bio-molecular networks? Are there any methods to clarify the relationships among the structures, dynamics and functions of bio-molecular networks? How can we statistically analyse large-scale bio-molecular networks? Focusing on the modeling and analysis of bio-molecular networks, the book presents various sophisticated mathematical and statistical approaches. The life system can be described using various levels of bio-molecular networks, including gene regulatory networks, and protein-protein interaction networks. It first provides an overview of approaches to reconstruct various bio-molecular networks, and then discusses the modeling and dynamical analysis of simple genetic circuits, coupled genetic circuits, middle-sized and large-scale biological networks, clarifying the relationships between the structures, dynamics and functions of the networks covered. In the context of large-scale bio-molecular networks, it introduces a number of statistical methods for exploring important bioinformatics applications, including the identification of significant bio-molecules for network medicine and genetic engineering. Lastly, the book describes various state-of-art statistical methods for analysing omics data generated by high-throughput sequencing. This book is a valuable resource for readers interested in applying systems biology, dynamical systems or complex networks to explore the truth of nature.