Author: Derek J. Chadwick
Publisher: John Wiley & Sons
ISBN: 0470034998
Category : Science
Languages : en
Pages : 300
Book Description
Oxygen sensing is a key physiological function of many tissues, but the identity of the sensor, the signalling pathways linking the sensor to the effector, and the endpoint effector mechanisms are all subjects of controversy. This book evaluates the various mediators that have been proposed, including the mitochondria, NAD(P)H oxidases, cytochrome p450 enzymes, and direct effects on enzymes and ion channels. There has been a resurgence of interest in the role of mitochondria, based partly on the ability of mitochondrial inhibitors to mimic hypoxia, but there is little consensus concerning mechanisms. Some favour the view that the primary signalling event is a reduction in cell redox state and reactive oxygen species (ROS) due to general inhibition of the electron transport chain (ETC); others support a key role for complex III of the ETC and an increase in ROS generation, while others doubt either of these components is the key intermediary. All these hypotheses are discussed in the book, together with conceptual problems concerning the ability of mitochondria to respond to physiological hypoxia. The other area of controversy covered in the book is the identity of the endpoint effector(s). Some authors favour K+ channel inhibition, followed by depolarization and Ca2+ entry via L-type channels, while others propose that release of Ca2+ from intracellular stores, or capacitative Ca2+ entry and other voltage-independent pathways may be more important. The book also describes evidence for an endothelium-dependent Ca2+-sensitizing pathway involving Rho and possibly other kinases. While some of these differences can be attributed to variation between tissues, many must be related to differences in interpretation or methodology. In this book, experts in the field of acute oxygen sensing working in different tissues address these controversies and their possible origins, and discuss possible approaches whereby these controversies might be resolved. The book will be of great interest to all those working in fields where oxygen sensing is important, particularly cancer and wound healing, as well as researchers in drug discovery and biotechnology.
Signalling Pathways in Acute Oxygen Sensing
Author: Derek J. Chadwick
Publisher: John Wiley & Sons
ISBN: 0470034998
Category : Science
Languages : en
Pages : 300
Book Description
Oxygen sensing is a key physiological function of many tissues, but the identity of the sensor, the signalling pathways linking the sensor to the effector, and the endpoint effector mechanisms are all subjects of controversy. This book evaluates the various mediators that have been proposed, including the mitochondria, NAD(P)H oxidases, cytochrome p450 enzymes, and direct effects on enzymes and ion channels. There has been a resurgence of interest in the role of mitochondria, based partly on the ability of mitochondrial inhibitors to mimic hypoxia, but there is little consensus concerning mechanisms. Some favour the view that the primary signalling event is a reduction in cell redox state and reactive oxygen species (ROS) due to general inhibition of the electron transport chain (ETC); others support a key role for complex III of the ETC and an increase in ROS generation, while others doubt either of these components is the key intermediary. All these hypotheses are discussed in the book, together with conceptual problems concerning the ability of mitochondria to respond to physiological hypoxia. The other area of controversy covered in the book is the identity of the endpoint effector(s). Some authors favour K+ channel inhibition, followed by depolarization and Ca2+ entry via L-type channels, while others propose that release of Ca2+ from intracellular stores, or capacitative Ca2+ entry and other voltage-independent pathways may be more important. The book also describes evidence for an endothelium-dependent Ca2+-sensitizing pathway involving Rho and possibly other kinases. While some of these differences can be attributed to variation between tissues, many must be related to differences in interpretation or methodology. In this book, experts in the field of acute oxygen sensing working in different tissues address these controversies and their possible origins, and discuss possible approaches whereby these controversies might be resolved. The book will be of great interest to all those working in fields where oxygen sensing is important, particularly cancer and wound healing, as well as researchers in drug discovery and biotechnology.
Publisher: John Wiley & Sons
ISBN: 0470034998
Category : Science
Languages : en
Pages : 300
Book Description
Oxygen sensing is a key physiological function of many tissues, but the identity of the sensor, the signalling pathways linking the sensor to the effector, and the endpoint effector mechanisms are all subjects of controversy. This book evaluates the various mediators that have been proposed, including the mitochondria, NAD(P)H oxidases, cytochrome p450 enzymes, and direct effects on enzymes and ion channels. There has been a resurgence of interest in the role of mitochondria, based partly on the ability of mitochondrial inhibitors to mimic hypoxia, but there is little consensus concerning mechanisms. Some favour the view that the primary signalling event is a reduction in cell redox state and reactive oxygen species (ROS) due to general inhibition of the electron transport chain (ETC); others support a key role for complex III of the ETC and an increase in ROS generation, while others doubt either of these components is the key intermediary. All these hypotheses are discussed in the book, together with conceptual problems concerning the ability of mitochondria to respond to physiological hypoxia. The other area of controversy covered in the book is the identity of the endpoint effector(s). Some authors favour K+ channel inhibition, followed by depolarization and Ca2+ entry via L-type channels, while others propose that release of Ca2+ from intracellular stores, or capacitative Ca2+ entry and other voltage-independent pathways may be more important. The book also describes evidence for an endothelium-dependent Ca2+-sensitizing pathway involving Rho and possibly other kinases. While some of these differences can be attributed to variation between tissues, many must be related to differences in interpretation or methodology. In this book, experts in the field of acute oxygen sensing working in different tissues address these controversies and their possible origins, and discuss possible approaches whereby these controversies might be resolved. The book will be of great interest to all those working in fields where oxygen sensing is important, particularly cancer and wound healing, as well as researchers in drug discovery and biotechnology.
The Arterial Chemoreceptors
Author: Yoshiaki Hayashida
Publisher: Springer Science & Business Media
ISBN: 0387313117
Category : Medical
Languages : en
Pages : 360
Book Description
This book represents an updated review of the physiology of the carotid body chemoreceptors. It contains results in the topics at the frontiers of future developments in O2-sensing in chemoreceptor cells. Additionally, this volume provides data from studies carried out in other O2-sensing tissues including pulmonary vasculature and erythropoietin producing cells. It is a prime source of information and a guideline for arterial chemoreception researchers.
Publisher: Springer Science & Business Media
ISBN: 0387313117
Category : Medical
Languages : en
Pages : 360
Book Description
This book represents an updated review of the physiology of the carotid body chemoreceptors. It contains results in the topics at the frontiers of future developments in O2-sensing in chemoreceptor cells. Additionally, this volume provides data from studies carried out in other O2-sensing tissues including pulmonary vasculature and erythropoietin producing cells. It is a prime source of information and a guideline for arterial chemoreception researchers.
Oxygen Sensing
Author:
Publisher: Elsevier
ISBN: 0080497195
Category : Science
Languages : en
Pages : 867
Book Description
The ability of cells to sense and respond to changes in oxygenation underlies a multitude of developmental, physiological, and pathological processes. This volume provides a comprehensive compendium of experimental approaches to the study of oxygen sensing in 48 chapters that are written by leaders in their fields.
Publisher: Elsevier
ISBN: 0080497195
Category : Science
Languages : en
Pages : 867
Book Description
The ability of cells to sense and respond to changes in oxygenation underlies a multitude of developmental, physiological, and pathological processes. This volume provides a comprehensive compendium of experimental approaches to the study of oxygen sensing in 48 chapters that are written by leaders in their fields.
Measuring Oxidants and Oxidative Stress in Biological Systems
Author: Lawrence J. Berliner
Publisher: Springer Nature
ISBN: 303047318X
Category : Science
Languages : en
Pages : 241
Book Description
This book describes the methods of analysis and determination of oxidants and oxidative stress in biological systems. Reviews and protocols on select methods of analysis of ROS, RNS, oxygen, redox status, and oxidative stress in biological systems are described in detail. It is an essential resource for both novices and experts in the field of oxidant and oxidative stress biology.
Publisher: Springer Nature
ISBN: 303047318X
Category : Science
Languages : en
Pages : 241
Book Description
This book describes the methods of analysis and determination of oxidants and oxidative stress in biological systems. Reviews and protocols on select methods of analysis of ROS, RNS, oxygen, redox status, and oxidative stress in biological systems are described in detail. It is an essential resource for both novices and experts in the field of oxidant and oxidative stress biology.
The Carotid Body Chemoreceptors
Author:
Publisher:
ISBN:
Category : Medical
Languages : en
Pages : 264
Book Description
Publisher:
ISBN:
Category : Medical
Languages : en
Pages : 264
Book Description
The History of Cell Respiration and Cytochrome
Author: David Keilin
Publisher: CUP Archive
ISBN:
Category : Cell respiration
Languages : en
Pages : 460
Book Description
Publisher: CUP Archive
ISBN:
Category : Cell respiration
Languages : en
Pages : 460
Book Description
Plant Responses to Hypoxia
Author: Elena Loreti
Publisher: MDPI
ISBN: 3036501487
Category : Science
Languages : en
Pages : 288
Book Description
Molecular oxygen deficiency leads to altered cellular metabolism and can dramatically reduce crop productivity. Nearly all crops are negatively affected by a lack of oxygen (hypoxia) due to adverse environmental conditions such as excessive rain and soil waterlogging. Extensive efforts to fully understand how plants sense oxygen deficiency and their ability to respond using different strategies are crucial to increase hypoxia tolerance. Progress in our understanding has been significant in recent years. This topic certainly deserves more attention from the academic community; therefore, we have compiled a series of articles reflecting the advancements made thus far.
Publisher: MDPI
ISBN: 3036501487
Category : Science
Languages : en
Pages : 288
Book Description
Molecular oxygen deficiency leads to altered cellular metabolism and can dramatically reduce crop productivity. Nearly all crops are negatively affected by a lack of oxygen (hypoxia) due to adverse environmental conditions such as excessive rain and soil waterlogging. Extensive efforts to fully understand how plants sense oxygen deficiency and their ability to respond using different strategies are crucial to increase hypoxia tolerance. Progress in our understanding has been significant in recent years. This topic certainly deserves more attention from the academic community; therefore, we have compiled a series of articles reflecting the advancements made thus far.
Hypoxia and Anoxia
Author: Kusal Das
Publisher: BoD – Books on Demand
ISBN: 1789848288
Category : Medical
Languages : en
Pages : 146
Book Description
The molecular deprivation of oxygen is manifested by hypoxia, a deficiency of oxygen and anoxia, or the absence of oxygen supply to the tissues. This book entitled Hypoxia and Anoxia will cover a broad range of understanding on hypoxia and anoxia from molecular mechanisms to pathophysiology. Hypoxia and anoxia stimulate multiple systems through specific cell signal transduction pathways and regulate several transcriptional factors like HIF-1, REST to encode genes for VEGF, Epo, etc. This book will also highlight different types of hypoxia and anoxia along with their impact on apoptosis, cardiovascular pathophysiology, and glucose regulatory mechanisms. This book will be a ready reckoner to give a deep understanding of the oxygen-sensing environment in vivo for researchers, academicians, and clinicians throughout the world.
Publisher: BoD – Books on Demand
ISBN: 1789848288
Category : Medical
Languages : en
Pages : 146
Book Description
The molecular deprivation of oxygen is manifested by hypoxia, a deficiency of oxygen and anoxia, or the absence of oxygen supply to the tissues. This book entitled Hypoxia and Anoxia will cover a broad range of understanding on hypoxia and anoxia from molecular mechanisms to pathophysiology. Hypoxia and anoxia stimulate multiple systems through specific cell signal transduction pathways and regulate several transcriptional factors like HIF-1, REST to encode genes for VEGF, Epo, etc. This book will also highlight different types of hypoxia and anoxia along with their impact on apoptosis, cardiovascular pathophysiology, and glucose regulatory mechanisms. This book will be a ready reckoner to give a deep understanding of the oxygen-sensing environment in vivo for researchers, academicians, and clinicians throughout the world.
Protein Carbonylation
Author: Joaquim Ros
Publisher: John Wiley & Sons
ISBN: 1119074916
Category : Science
Languages : en
Pages : 416
Book Description
Protein carbonylation has attracted the interest of a great number of laboratories since the pioneering studies at the Earl Stadtman’s lab at NIH started in early 1980s. Since then, detecting protein carbonyls in oxidative stress situations became a highly efficient tool to uncover biomarkers of oxidative damage in normal and altered cell physiology. In this book, research groups from several areas of interest have contributed to update the knowledge regarding detection, analyses and identification of carbonylated proteins and the sites where these modifications occur. The scientific community will benefit from these reviews since they deal with specific, detailed technical approaches to study formation and detection of protein carbonyls. Moreover, the biological impact of such modifications in metabolic, physiologic and structural functions and, how these alterations can help understanding the downstream effects on cell function are discussed. Oxidative stress occurs in all living organisms and affects proteins and other macromolecules: Protein carbonylation is a measure of oxidative stress in biological systems Mass spectrometry, fluorescent labelling, antibody based detection, biotinylated protein selection and other methods for detecting protein carbonyls and modification sites in proteins are described Aging, neurodegenerative diseases, obstructive pulmonary diseases, malaria, cigarette smoke, adipose tissue and its relationship with protein carbonylation Direct oxidation, glycoxidation and modifications by lipid peroxidation products as protein carbonylation pathways Emerging methods for characterizing carbonylated protein networks and affected metabolic pathways
Publisher: John Wiley & Sons
ISBN: 1119074916
Category : Science
Languages : en
Pages : 416
Book Description
Protein carbonylation has attracted the interest of a great number of laboratories since the pioneering studies at the Earl Stadtman’s lab at NIH started in early 1980s. Since then, detecting protein carbonyls in oxidative stress situations became a highly efficient tool to uncover biomarkers of oxidative damage in normal and altered cell physiology. In this book, research groups from several areas of interest have contributed to update the knowledge regarding detection, analyses and identification of carbonylated proteins and the sites where these modifications occur. The scientific community will benefit from these reviews since they deal with specific, detailed technical approaches to study formation and detection of protein carbonyls. Moreover, the biological impact of such modifications in metabolic, physiologic and structural functions and, how these alterations can help understanding the downstream effects on cell function are discussed. Oxidative stress occurs in all living organisms and affects proteins and other macromolecules: Protein carbonylation is a measure of oxidative stress in biological systems Mass spectrometry, fluorescent labelling, antibody based detection, biotinylated protein selection and other methods for detecting protein carbonyls and modification sites in proteins are described Aging, neurodegenerative diseases, obstructive pulmonary diseases, malaria, cigarette smoke, adipose tissue and its relationship with protein carbonylation Direct oxidation, glycoxidation and modifications by lipid peroxidation products as protein carbonylation pathways Emerging methods for characterizing carbonylated protein networks and affected metabolic pathways
2-Oxoglutarate-Dependent Oxygenases
Author: Christopher Schofield
Publisher: Royal Society of Chemistry
ISBN: 1782621954
Category : Science
Languages : en
Pages : 508
Book Description
Since the discovery of the first examples of 2-oxoglutarate-dependent oxygenase-catalysed reactions in the 1960s, a remarkably broad diversity of alternate reactions and substrates has been revealed, and extensive advances have been achieved in our understanding of the structures and catalytic mechanisms. These enzymes are important agrochemical targets and are being pursued as therapeutic targets for a wide range of diseases including cancer and anemia. This book provides a central source of information that summarizes the key features of the essential group of 2-oxoglutarate-dependent dioxygenases and related enzymes. Given the numerous recent advances and biomedical interest in the field, this book aims to unite the latest research for those already working in the field as well as to provide an introduction for those newly approaching the topic, and for those interested in translating the basic science into medicinal and agricultural benefits. The book begins with four broad chapters that highlight critical aspects, including an overview of possible catalytic reactions, structures and mechanisms. The following seventeen chapters focus on carefully selected topics, each written by leading experts in the area. Readers will find explanations of rapidly evolving research, from the chemistry of isopenicillin N synthase to the oxidation mechanism of 5-methylcytosine in DNA by ten-eleven-translocase oxygenases.
Publisher: Royal Society of Chemistry
ISBN: 1782621954
Category : Science
Languages : en
Pages : 508
Book Description
Since the discovery of the first examples of 2-oxoglutarate-dependent oxygenase-catalysed reactions in the 1960s, a remarkably broad diversity of alternate reactions and substrates has been revealed, and extensive advances have been achieved in our understanding of the structures and catalytic mechanisms. These enzymes are important agrochemical targets and are being pursued as therapeutic targets for a wide range of diseases including cancer and anemia. This book provides a central source of information that summarizes the key features of the essential group of 2-oxoglutarate-dependent dioxygenases and related enzymes. Given the numerous recent advances and biomedical interest in the field, this book aims to unite the latest research for those already working in the field as well as to provide an introduction for those newly approaching the topic, and for those interested in translating the basic science into medicinal and agricultural benefits. The book begins with four broad chapters that highlight critical aspects, including an overview of possible catalytic reactions, structures and mechanisms. The following seventeen chapters focus on carefully selected topics, each written by leading experts in the area. Readers will find explanations of rapidly evolving research, from the chemistry of isopenicillin N synthase to the oxidation mechanism of 5-methylcytosine in DNA by ten-eleven-translocase oxygenases.