Signal Processing Techniques for Improving Image Reconstruction of Parallel Magnetic Resonance Imaging and Dynamic Magnetic Resonance Imaging

Signal Processing Techniques for Improving Image Reconstruction of Parallel Magnetic Resonance Imaging and Dynamic Magnetic Resonance Imaging PDF Author: Huajun She
Publisher:
ISBN:
Category : Diagnostic imaging
Languages : en
Pages : 115

Get Book Here

Book Description


MRI

MRI PDF Author: Angshul Majumdar
Publisher: CRC Press
ISBN: 1482298899
Category : Technology & Engineering
Languages : en
Pages : 222

Get Book Here

Book Description
The field of magnetic resonance imaging (MRI) has developed rapidly over the past decade, benefiting greatly from the newly developed framework of compressed sensing and its ability to drastically reduce MRI scan times. MRI: Physics, Image Reconstruction, and Analysis presents the latest research in MRI technology, emphasizing compressed sensing-based image reconstruction techniques. The book begins with a succinct introduction to the principles of MRI and then: Discusses the technology and applications of T1rho MRI Details the recovery of highly sampled functional MRIs Explains sparsity-based techniques for quantitative MRIs Describes multi-coil parallel MRI reconstruction techniques Examines off-line techniques in dynamic MRI reconstruction Explores advances in brain connectivity analysis using diffusion and functional MRIs Featuring chapters authored by field experts, MRI: Physics, Image Reconstruction, and Analysis delivers an authoritative and cutting-edge treatment of MRI reconstruction techniques. The book provides engineers, physicists, and graduate students with a comprehensive look at the state of the art of MRI.

Regularized Image Reconstruction in Parallel MRI with MATLAB

Regularized Image Reconstruction in Parallel MRI with MATLAB PDF Author: Joseph Suresh Paul
Publisher: CRC Press
ISBN: 1351029258
Category : Medical
Languages : en
Pages : 306

Get Book Here

Book Description
Regularization becomes an integral part of the reconstruction process in accelerated parallel magnetic resonance imaging (pMRI) due to the need for utilizing the most discriminative information in the form of parsimonious models to generate high quality images with reduced noise and artifacts. Apart from providing a detailed overview and implementation details of various pMRI reconstruction methods, Regularized image reconstruction in parallel MRI with MATLAB examples interprets regularized image reconstruction in pMRI as a means to effectively control the balance between two specific types of error signals to either improve the accuracy in estimation of missing samples, or speed up the estimation process. The first type corresponds to the modeling error between acquired and their estimated values. The second type arises due to the perturbation of k-space values in autocalibration methods or sparse approximation in the compressed sensing based reconstruction model. Features: Provides details for optimizing regularization parameters in each type of reconstruction. Presents comparison of regularization approaches for each type of pMRI reconstruction. Includes discussion of case studies using clinically acquired data. MATLAB codes are provided for each reconstruction type. Contains method-wise description of adapting regularization to optimize speed and accuracy. This book serves as a reference material for researchers and students involved in development of pMRI reconstruction methods. Industry practitioners concerned with how to apply regularization in pMRI reconstruction will find this book most useful.

Principles of Magnetic Resonance Imaging

Principles of Magnetic Resonance Imaging PDF Author: Zhi-Pei Liang
Publisher: Wiley-IEEE Press
ISBN:
Category : Medical
Languages : en
Pages : 442

Get Book Here

Book Description
In 1971 Dr. Paul C. Lauterbur pioneered spatial information encoding principles that made image formation possible by using magnetic resonance signals. Now Lauterbur, "father of the MRI", and Dr. Zhi-Pei Liang have co-authored the first engineering textbook on magnetic resonance imaging. This long-awaited, definitive text will help undergraduate and graduate students of biomedical engineering, biomedical imaging scientists, radiologists, and electrical engineers gain an in-depth understanding of MRI principles. The authors use a signal processing approach to describe the fundamentals of magnetic resonance imaging. You will find a clear and rigorous discussion of these carefully selected essential topics: Mathematical fundamentals Signal generation and detection principles Signal characteristics Signal localization principles Image reconstruction techniques Image contrast mechanisms Image resolution, noise, and artifacts Fast-scan imaging Constrained reconstruction Complete with a comprehensive set of examples and homework problems, Principles of Magnetic Resonance Imaging is the must-read book to improve your knowledge of this revolutionary technique.

Improved Signal and Image Interpolation in Biomedical Applications: The Case of Magnetic Resonance Imaging (MRI)

Improved Signal and Image Interpolation in Biomedical Applications: The Case of Magnetic Resonance Imaging (MRI) PDF Author: Ciulla, Carlo
Publisher: IGI Global
ISBN: 1605662038
Category : Computers
Languages : en
Pages : 640

Get Book Here

Book Description
"This book presents novel concepts supported through mathematics to create unique theories related to interpolation"--Provided by publisher.

Signal Processing for Magnetic Resonance Imaging and Spectroscopy

Signal Processing for Magnetic Resonance Imaging and Spectroscopy PDF Author: Hong Yan
Publisher: CRC Press
ISBN: 0203908783
Category : Technology & Engineering
Languages : en
Pages : 666

Get Book Here

Book Description
This reference/text contains the latest signal processing techniques in magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) for more efficient clinical diagnoses-providing ready-to-use algorithms for image segmentation and analysis, reconstruction and visualization, and removal of distortions and artifacts for increased detec

Advanced Image Processing in Magnetic Resonance Imaging

Advanced Image Processing in Magnetic Resonance Imaging PDF Author: Luigi Landini
Publisher: CRC Press
ISBN: 1420028669
Category : Technology & Engineering
Languages : en
Pages : 632

Get Book Here

Book Description
The popularity of magnetic resonance (MR) imaging in medicine is no mystery: it is non-invasive, it produces high quality structural and functional image data, and it is very versatile and flexible. Research into MR technology is advancing at a blistering pace, and modern engineers must keep up with the latest developments. This is only possible with a firm grounding in the basic principles of MR, and Advanced Image Processing in Magnetic Resonance Imaging solidly integrates this foundational knowledge with the latest advances in the field. Beginning with the basics of signal and image generation and reconstruction, the book covers in detail the signal processing techniques and algorithms, filtering techniques for MR images, quantitative analysis including image registration and integration of EEG and MEG techniques with MR, and MR spectroscopy techniques. The final section of the book explores functional MRI (fMRI) in detail, discussing fundamentals and advanced exploratory data analysis, Bayesian inference, and nonlinear analysis. Many of the results presented in the book are derived from the contributors' own work, imparting highly practical experience through experimental and numerical methods. Contributed by international experts at the forefront of the field, Advanced Image Processing in Magnetic Resonance Imaging is an indispensable guide for anyone interested in further advancing the technology and capabilities of MR imaging.

Regularized Image Reconstruction in Parallel MRI with MATLAB

Regularized Image Reconstruction in Parallel MRI with MATLAB PDF Author: Joseph Suresh Paul
Publisher: CRC Press
ISBN: 135102924X
Category : Medical
Languages : en
Pages : 271

Get Book Here

Book Description
Regularization becomes an integral part of the reconstruction process in accelerated parallel magnetic resonance imaging (pMRI) due to the need for utilizing the most discriminative information in the form of parsimonious models to generate high quality images with reduced noise and artifacts. Apart from providing a detailed overview and implementation details of various pMRI reconstruction methods, Regularized image reconstruction in parallel MRI with MATLAB examples interprets regularized image reconstruction in pMRI as a means to effectively control the balance between two specific types of error signals to either improve the accuracy in estimation of missing samples, or speed up the estimation process. The first type corresponds to the modeling error between acquired and their estimated values. The second type arises due to the perturbation of k-space values in autocalibration methods or sparse approximation in the compressed sensing based reconstruction model. Features: Provides details for optimizing regularization parameters in each type of reconstruction. Presents comparison of regularization approaches for each type of pMRI reconstruction. Includes discussion of case studies using clinically acquired data. MATLAB codes are provided for each reconstruction type. Contains method-wise description of adapting regularization to optimize speed and accuracy. This book serves as a reference material for researchers and students involved in development of pMRI reconstruction methods. Industry practitioners concerned with how to apply regularization in pMRI reconstruction will find this book most useful.

Magnetic Resonance Image Reconstruction

Magnetic Resonance Image Reconstruction PDF Author: Mehmet Akcakaya
Publisher: Academic Press
ISBN: 012822746X
Category : Science
Languages : en
Pages : 518

Get Book Here

Book Description
Magnetic Resonance Image Reconstruction: Theory, Methods and Applications presents the fundamental concepts of MR image reconstruction, including its formulation as an inverse problem, as well as the most common models and optimization methods for reconstructing MR images. The book discusses approaches for specific applications such as non-Cartesian imaging, under sampled reconstruction, motion correction, dynamic imaging and quantitative MRI. This unique resource is suitable for physicists, engineers, technologists and clinicians with an interest in medical image reconstruction and MRI. Explains the underlying principles of MRI reconstruction, along with the latest research“/li> Gives example codes for some of the methods presented Includes updates on the latest developments, including compressed sensing, tensor-based reconstruction and machine learning based reconstruction

Reduced-data Magnetic Resonance Imaging Reconstruction Methods

Reduced-data Magnetic Resonance Imaging Reconstruction Methods PDF Author: Lei Hou Hamilton
Publisher:
ISBN:
Category : Diagnostic imaging
Languages : en
Pages :

Get Book Here

Book Description
Imaging speed is very important in magnetic resonance imaging (MRI), especially in dynamic cardiac applications, which involve respiratory motion and heart motion. With the introduction of reduced-data MR imaging methods, increasing acquisition speed has become possible without requiring a higher gradient system. But these reduced-data imaging methods carry a price for higher imaging speed. This may be a signal-to-noise ratio (SNR) penalty, reduced resolution, or a combination of both. Many methods sacrifice edge information in favor of SNR gain, which is not preferable for applications which require accurate detection of myocardial boundaries. The central goal of this thesis is to develop novel reduced-data imaging methods to improve reconstructed image performance. This thesis presents a novel reduced-data imaging method, PINOT (Parallel Imaging and NOquist in Tandem), to accelerate MR imaging. As illustrated by a variety of computer simulated and real cardiac MRI data experiments, PINOT preserves the edge details, with flexibility of improving SNR by regularization. Another contribution is to exploit the data redundancy from parallel imaging, rFOV and partial Fourier methods. A Gerchberg Reduced Iterative System (GRIS), implemented with the Gerchberg-Papoulis (GP) iterative algorithm is introduced. Under the GRIS, which utilizes a temporal band-limitation constraint in the image reconstruction, a variant of Noquist called iterative implementation iNoquist (iterative Noquist) is proposed. Utilizing a different source of prior information, first combining iNoquist and Partial Fourier technique (phase-constrained iNoquist) and further integrating with parallel imaging methods (PINOT-GRIS) are presented to achieve additional acceleration gains.