Author:
Publisher:
ISBN:
Category : Automatic tracking
Languages : en
Pages : 516
Book Description
Signal Processing, Sensor Fusion, and Target Recognition
Author:
Publisher:
ISBN:
Category : Automatic tracking
Languages : en
Pages : 516
Book Description
Publisher:
ISBN:
Category : Automatic tracking
Languages : en
Pages : 516
Book Description
Handbook of Multisensor Data Fusion
Author: Martin Liggins II
Publisher: CRC Press
ISBN: 1420053094
Category : Technology & Engineering
Languages : en
Pages : 872
Book Description
In the years since the bestselling first edition, fusion research and applications have adapted to service-oriented architectures and pushed the boundaries of situational modeling in human behavior, expanding into fields such as chemical and biological sensing, crisis management, and intelligent buildings. Handbook of Multisensor Data Fusion: Theory and Practice, Second Edition represents the most current concepts and theory as information fusion expands into the realm of network-centric architectures. It reflects new developments in distributed and detection fusion, situation and impact awareness in complex applications, and human cognitive concepts. With contributions from the world’s leading fusion experts, this second edition expands to 31 chapters covering the fundamental theory and cutting-edge developments that are driving this field. New to the Second Edition— · Applications in electromagnetic systems and chemical and biological sensors · Army command and combat identification techniques · Techniques for automated reasoning · Advances in Kalman filtering · Fusion in a network centric environment · Service-oriented architecture concepts · Intelligent agents for improved decision making · Commercial off-the-shelf (COTS) software tools From basic information to state-of-the-art theories, this second edition continues to be a unique, comprehensive, and up-to-date resource for data fusion systems designers.
Publisher: CRC Press
ISBN: 1420053094
Category : Technology & Engineering
Languages : en
Pages : 872
Book Description
In the years since the bestselling first edition, fusion research and applications have adapted to service-oriented architectures and pushed the boundaries of situational modeling in human behavior, expanding into fields such as chemical and biological sensing, crisis management, and intelligent buildings. Handbook of Multisensor Data Fusion: Theory and Practice, Second Edition represents the most current concepts and theory as information fusion expands into the realm of network-centric architectures. It reflects new developments in distributed and detection fusion, situation and impact awareness in complex applications, and human cognitive concepts. With contributions from the world’s leading fusion experts, this second edition expands to 31 chapters covering the fundamental theory and cutting-edge developments that are driving this field. New to the Second Edition— · Applications in electromagnetic systems and chemical and biological sensors · Army command and combat identification techniques · Techniques for automated reasoning · Advances in Kalman filtering · Fusion in a network centric environment · Service-oriented architecture concepts · Intelligent agents for improved decision making · Commercial off-the-shelf (COTS) software tools From basic information to state-of-the-art theories, this second edition continues to be a unique, comprehensive, and up-to-date resource for data fusion systems designers.
Author:
Publisher: CRC Press
ISBN: 1135439621
Category :
Languages : en
Pages : 1142
Book Description
Publisher: CRC Press
ISBN: 1135439621
Category :
Languages : en
Pages : 1142
Book Description
Multi-Sensor Information Fusion
Author: Xue-Bo Jin
Publisher: MDPI
ISBN: 3039283022
Category : Technology & Engineering
Languages : en
Pages : 602
Book Description
This book includes papers from the section “Multisensor Information Fusion”, from Sensors between 2018 to 2019. It focuses on the latest research results of current multi-sensor fusion technologies and represents the latest research trends, including traditional information fusion technologies, estimation and filtering, and the latest research, artificial intelligence involving deep learning.
Publisher: MDPI
ISBN: 3039283022
Category : Technology & Engineering
Languages : en
Pages : 602
Book Description
This book includes papers from the section “Multisensor Information Fusion”, from Sensors between 2018 to 2019. It focuses on the latest research results of current multi-sensor fusion technologies and represents the latest research trends, including traditional information fusion technologies, estimation and filtering, and the latest research, artificial intelligence involving deep learning.
Multisensor Data Fusion
Author: David Hall
Publisher: CRC Press
ISBN: 1420038540
Category : Technology & Engineering
Languages : en
Pages : 564
Book Description
The emerging technology of multisensor data fusion has a wide range of applications, both in Department of Defense (DoD) areas and in the civilian arena. The techniques of multisensor data fusion draw from an equally broad range of disciplines, including artificial intelligence, pattern recognition, and statistical estimation. With the rapid evolut
Publisher: CRC Press
ISBN: 1420038540
Category : Technology & Engineering
Languages : en
Pages : 564
Book Description
The emerging technology of multisensor data fusion has a wide range of applications, both in Department of Defense (DoD) areas and in the civilian arena. The techniques of multisensor data fusion draw from an equally broad range of disciplines, including artificial intelligence, pattern recognition, and statistical estimation. With the rapid evolut
NDT Data Fusion
Author: Xavier Gros
Publisher: Elsevier
ISBN: 0080524044
Category : Technology & Engineering
Languages : en
Pages : 233
Book Description
Data fusion is a rapidly developing technology which involves the combination of information supplied by several NDT (Non-Destructive Testing) sensors to provide a more complete and understandable picture of structural integrity. This text is the first to be devoted exclusively to the concept of multisensor integration and data fusion applied to NDT. The advantages of this methodology are widely acknowledged and the author presents an excellent introduction to data fusion processes. Problems are approached progressively through detailed case studies, offering practical guidance for those wishing to develop and explore NDT data fusion further. This book will prove invaluable to inspectors, students and researchers concerned with NDT signal processing measurements and testing. It shows the great value and major benefits which can be achieved by implementing multisensor data fusion, not only in NDT but also in any discipline where measurements and testing are key activities.
Publisher: Elsevier
ISBN: 0080524044
Category : Technology & Engineering
Languages : en
Pages : 233
Book Description
Data fusion is a rapidly developing technology which involves the combination of information supplied by several NDT (Non-Destructive Testing) sensors to provide a more complete and understandable picture of structural integrity. This text is the first to be devoted exclusively to the concept of multisensor integration and data fusion applied to NDT. The advantages of this methodology are widely acknowledged and the author presents an excellent introduction to data fusion processes. Problems are approached progressively through detailed case studies, offering practical guidance for those wishing to develop and explore NDT data fusion further. This book will prove invaluable to inspectors, students and researchers concerned with NDT signal processing measurements and testing. It shows the great value and major benefits which can be achieved by implementing multisensor data fusion, not only in NDT but also in any discipline where measurements and testing are key activities.
Signal Processing, Sensor Fusion, and Target Recognition VIII.
Author: Ivan Kadar
Publisher:
ISBN:
Category : Electronic books
Languages : en
Pages : 496
Book Description
Publisher:
ISBN:
Category : Electronic books
Languages : en
Pages : 496
Book Description
Advances and Applications of DSmT for Information Fusion (Collected Works. Volume 5)
Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Biography & Autobiography
Languages : en
Pages : 932
Book Description
This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 (available at fs.unm.edu/DSmT-book4.pdf or www.onera.fr/sites/default/files/297/2015-DSmT-Book4.pdf) in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well. We want to thank all the contributors of this fifth volume for their research works and their interests in the development of DSmT, and the belief functions. We are grateful as well to other colleagues for encouraging us to edit this fifth volume, and for sharing with us several ideas and for their questions and comments on DSmT through the years. We thank the International Society of Information Fusion (www.isif.org) for diffusing main research works related to information fusion (including DSmT) in the international fusion conferences series over the years. Florentin Smarandache is grateful to The University of New Mexico, U.S.A., that many times partially sponsored him to attend international conferences, workshops and seminars on Information Fusion. Jean Dezert is grateful to the Department of Information Processing and Systems (DTIS) of the French Aerospace Lab (Office National d’E´tudes et de Recherches Ae´rospatiales), Palaiseau, France, for encouraging him to carry on this research and for its financial support. Albena Tchamova is first of all grateful to Dr. Jean Dezert for the opportunity to be involved during more than 20 years to follow and share his smart and beautiful visions and ideas in the development of the powerful Dezert-Smarandache Theory for data fusion. She is also grateful to the Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, for sponsoring her to attend international conferences on Information Fusion.
Publisher: Infinite Study
ISBN:
Category : Biography & Autobiography
Languages : en
Pages : 932
Book Description
This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 (available at fs.unm.edu/DSmT-book4.pdf or www.onera.fr/sites/default/files/297/2015-DSmT-Book4.pdf) in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well. We want to thank all the contributors of this fifth volume for their research works and their interests in the development of DSmT, and the belief functions. We are grateful as well to other colleagues for encouraging us to edit this fifth volume, and for sharing with us several ideas and for their questions and comments on DSmT through the years. We thank the International Society of Information Fusion (www.isif.org) for diffusing main research works related to information fusion (including DSmT) in the international fusion conferences series over the years. Florentin Smarandache is grateful to The University of New Mexico, U.S.A., that many times partially sponsored him to attend international conferences, workshops and seminars on Information Fusion. Jean Dezert is grateful to the Department of Information Processing and Systems (DTIS) of the French Aerospace Lab (Office National d’E´tudes et de Recherches Ae´rospatiales), Palaiseau, France, for encouraging him to carry on this research and for its financial support. Albena Tchamova is first of all grateful to Dr. Jean Dezert for the opportunity to be involved during more than 20 years to follow and share his smart and beautiful visions and ideas in the development of the powerful Dezert-Smarandache Theory for data fusion. She is also grateful to the Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, for sponsoring her to attend international conferences on Information Fusion.
Predicting Vehicle Trajectory
Author: Cesar Barrios
Publisher: CRC Press
ISBN: 1351654810
Category : Technology & Engineering
Languages : en
Pages : 223
Book Description
This book concentrates on improving the prediction of a vehicle’s future trajectory, particularly on non-straight paths. Having an accurate prediction of where a vehicle is heading is crucial for the system to reliably determine possible path intersections of more than one vehicle at the same time. The US DOT will be mandating that all vehicle manufacturers begin implementing V2V and V2I systems, so very soon collision avoidance systems will no longer rely on line of sight sensors, but instead will be able to take into account another vehicle’s spatial movements to determine if the future trajectories of the vehicles will intersect at the same time. Furthermore, the book introduces the reader to some improvements when predicting the future trajectory of a vehicle and presents a novel temporary solution on how to speed up the implementation of such V2V collision avoidance systems. Additionally, it evaluates whether smartphones can be used for trajectory predictions, in an attempt to populate a V2V collision avoidance system faster than a vehicle manufacturer can.
Publisher: CRC Press
ISBN: 1351654810
Category : Technology & Engineering
Languages : en
Pages : 223
Book Description
This book concentrates on improving the prediction of a vehicle’s future trajectory, particularly on non-straight paths. Having an accurate prediction of where a vehicle is heading is crucial for the system to reliably determine possible path intersections of more than one vehicle at the same time. The US DOT will be mandating that all vehicle manufacturers begin implementing V2V and V2I systems, so very soon collision avoidance systems will no longer rely on line of sight sensors, but instead will be able to take into account another vehicle’s spatial movements to determine if the future trajectories of the vehicles will intersect at the same time. Furthermore, the book introduces the reader to some improvements when predicting the future trajectory of a vehicle and presents a novel temporary solution on how to speed up the implementation of such V2V collision avoidance systems. Additionally, it evaluates whether smartphones can be used for trajectory predictions, in an attempt to populate a V2V collision avoidance system faster than a vehicle manufacturer can.
Integrated Tracking, Classification, and Sensor Management
Author: Mahendra Mallick
Publisher: John Wiley & Sons
ISBN: 0470639059
Category : Technology & Engineering
Languages : en
Pages : 738
Book Description
A unique guide to the state of the art of tracking, classification, and sensor management This book addresses the tremendous progress made over the last few decades in algorithm development and mathematical analysis for filtering, multi-target multi-sensor tracking, sensor management and control, and target classification. It provides for the first time an integrated treatment of these advanced topics, complete with careful mathematical formulation, clear description of the theory, and real-world applications. Written by experts in the field, Integrated Tracking, Classification, and Sensor Management provides readers with easy access to key Bayesian modeling and filtering methods, multi-target tracking approaches, target classification procedures, and large scale sensor management problem-solving techniques. Features include: An accessible coverage of random finite set based multi-target filtering algorithms such as the Probability Hypothesis Density filters and multi-Bernoulli filters with focus on problem solving A succinct overview of the track-oriented MHT that comprehensively collates all significant developments in filtering and tracking A state-of-the-art algorithm for hybrid Bayesian network (BN) inference that is efficient and scalable for complex classification models New structural results in stochastic sensor scheduling and algorithms for dynamic sensor scheduling and management Coverage of the posterior Cramer-Rao lower bound (PCRLB) for target tracking and sensor management Insight into cutting-edge military and civilian applications, including intelligence, surveillance, and reconnaissance (ISR) With its emphasis on the latest research results, Integrated Tracking, Classification, and Sensor Management is an invaluable guide for researchers and practitioners in statistical signal processing, radar systems, operations research, and control theory.
Publisher: John Wiley & Sons
ISBN: 0470639059
Category : Technology & Engineering
Languages : en
Pages : 738
Book Description
A unique guide to the state of the art of tracking, classification, and sensor management This book addresses the tremendous progress made over the last few decades in algorithm development and mathematical analysis for filtering, multi-target multi-sensor tracking, sensor management and control, and target classification. It provides for the first time an integrated treatment of these advanced topics, complete with careful mathematical formulation, clear description of the theory, and real-world applications. Written by experts in the field, Integrated Tracking, Classification, and Sensor Management provides readers with easy access to key Bayesian modeling and filtering methods, multi-target tracking approaches, target classification procedures, and large scale sensor management problem-solving techniques. Features include: An accessible coverage of random finite set based multi-target filtering algorithms such as the Probability Hypothesis Density filters and multi-Bernoulli filters with focus on problem solving A succinct overview of the track-oriented MHT that comprehensively collates all significant developments in filtering and tracking A state-of-the-art algorithm for hybrid Bayesian network (BN) inference that is efficient and scalable for complex classification models New structural results in stochastic sensor scheduling and algorithms for dynamic sensor scheduling and management Coverage of the posterior Cramer-Rao lower bound (PCRLB) for target tracking and sensor management Insight into cutting-edge military and civilian applications, including intelligence, surveillance, and reconnaissance (ISR) With its emphasis on the latest research results, Integrated Tracking, Classification, and Sensor Management is an invaluable guide for researchers and practitioners in statistical signal processing, radar systems, operations research, and control theory.