Author: Ben J.J. Lugtenberg
Publisher: Springer
ISBN: 3642741584
Category : Science
Languages : en
Pages : 427
Book Description
Proceedings of the NATO Advanced Research Workshop on Molecular Signals in Microbe-Plant Symbiotic and Pathogenic Systems, held at Biddinghuizen, The Netherlands, May 21-26, 1989
Signal Molecules in Plants and Plant-Microbe Interactions
Author: Ben J.J. Lugtenberg
Publisher: Springer
ISBN: 3642741584
Category : Science
Languages : en
Pages : 427
Book Description
Proceedings of the NATO Advanced Research Workshop on Molecular Signals in Microbe-Plant Symbiotic and Pathogenic Systems, held at Biddinghuizen, The Netherlands, May 21-26, 1989
Publisher: Springer
ISBN: 3642741584
Category : Science
Languages : en
Pages : 427
Book Description
Proceedings of the NATO Advanced Research Workshop on Molecular Signals in Microbe-Plant Symbiotic and Pathogenic Systems, held at Biddinghuizen, The Netherlands, May 21-26, 1989
Plant Pathology
Author: Christian Joseph Cumagun
Publisher: BoD – Books on Demand
ISBN: 9535104896
Category : Medical
Languages : en
Pages : 378
Book Description
Plant pathology is an applied science that deals with the nature, causes and control of plant diseases in agriculture and forestry. The vital role of plant pathology in attaining food security and food safety for the world cannot be overemphasized.
Publisher: BoD – Books on Demand
ISBN: 9535104896
Category : Medical
Languages : en
Pages : 378
Book Description
Plant pathology is an applied science that deals with the nature, causes and control of plant diseases in agriculture and forestry. The vital role of plant pathology in attaining food security and food safety for the world cannot be overemphasized.
Rhizosphere Biology: Interactions Between Microbes and Plants
Author: Vadakattu V. S. R. Gupta
Publisher: Springer Nature
ISBN: 9811561257
Category : Medical
Languages : en
Pages : 366
Book Description
This book presents a detailed discussion on the direct interactions of plants and microorganisms in the rhizosphere environment. It includes fifteen chapters, each focusing on a specific component of plant-microbe interactions, such as the influence of plants on the root microbiome, and the downstream effects of rhizosphere microbial dynamics on carbon and nutrient fluxes in the surroundings. As such, the book helps readers gain a better understanding of diversity above the ground, and its effect on the microbiome and its functionality.
Publisher: Springer Nature
ISBN: 9811561257
Category : Medical
Languages : en
Pages : 366
Book Description
This book presents a detailed discussion on the direct interactions of plants and microorganisms in the rhizosphere environment. It includes fifteen chapters, each focusing on a specific component of plant-microbe interactions, such as the influence of plants on the root microbiome, and the downstream effects of rhizosphere microbial dynamics on carbon and nutrient fluxes in the surroundings. As such, the book helps readers gain a better understanding of diversity above the ground, and its effect on the microbiome and its functionality.
Effectors in Plant-Microbe Interactions
Author: Francis Martin
Publisher: John Wiley & Sons
ISBN: 0470958227
Category : Science
Languages : en
Pages : 442
Book Description
Plants and microbes interact in a complex relationship that can have both harmful and beneficial impacts on both plant and microbial communities. Effectors, secreted microbial molecules that alter plant processes and facilitate colonization, are central to understanding the complicated interplay between plants and microbes. Effectors in Plant-Microbe Interactions unlocks the molecular basis of this important class of microbial molecules and describes their diverse and complex interactions with host plants. Effectors in Plant Microbe Interactions is divided into five sections that take stock of the current knowledge on effectors of plant-associated organisms. Coverage ranges from the impact of bacterial, fungal and oomycete effectors on plant immunity and high-throughput genomic analysis of effectors to the function and trafficking of these microbial molecules. The final section looks at effectors secreted by other eukaryotic microbes that are the focus of current and future research efforts. Written by leading international experts in plant-microbe interactions, Effectors in Plant Microbe Interactions, will be an essential volume for plant biologists, microbiologists, pathologists, and geneticists.
Publisher: John Wiley & Sons
ISBN: 0470958227
Category : Science
Languages : en
Pages : 442
Book Description
Plants and microbes interact in a complex relationship that can have both harmful and beneficial impacts on both plant and microbial communities. Effectors, secreted microbial molecules that alter plant processes and facilitate colonization, are central to understanding the complicated interplay between plants and microbes. Effectors in Plant-Microbe Interactions unlocks the molecular basis of this important class of microbial molecules and describes their diverse and complex interactions with host plants. Effectors in Plant Microbe Interactions is divided into five sections that take stock of the current knowledge on effectors of plant-associated organisms. Coverage ranges from the impact of bacterial, fungal and oomycete effectors on plant immunity and high-throughput genomic analysis of effectors to the function and trafficking of these microbial molecules. The final section looks at effectors secreted by other eukaryotic microbes that are the focus of current and future research efforts. Written by leading international experts in plant-microbe interactions, Effectors in Plant Microbe Interactions, will be an essential volume for plant biologists, microbiologists, pathologists, and geneticists.
Plant-Microbe Interactions
Author: B.B. Biswas
Publisher: Springer Science & Business Media
ISBN: 9780306456787
Category : Science
Languages : en
Pages : 472
Book Description
Recent years have seen tremendous progress in unraveling the molecular basis of different plant-microbe interactions. Knowledge has accumulated on the mecha nisms of the microbial infection of plants, which can lead to either disease or resistance. The mechanisms developed by plants to interact with microbes, whether viruses, bacteria, or fungi, involve events that can lead to symbiotic association or to disease or tumor formation. Cell death caused by pathogen infection has been of great interest for many years because of its association with plant resistance. There appear to be two types of plant cell death associated with pathogen infection, a rapid hypersensitive cell death localized at the site of infection during an incompatible interaction between a resistant plant and an avirulent pathogen, and a slow, normosensitive plant cell death that spreads beyond the site of infection during some compatible interactions involving a susceptible plant and a virulent, necrogenic pathogen. Plants possess a number of defense mechanisms against infection, such as (i) production of phytoalexin, (ii) formation of hydrolases, (iii) accumulation of hydroxyproline-rich glycoprotein and lignin deposition, (iv) production of pathogen-related proteins, (v) produc tion of oligosaccharides, jasmonic acid, and various other phenolic substances, and (vi) production of toxin-metabolizing enzymes. Based on these observations, insertion of a single suitable gene in a particular plant has yielded promising results in imparting resistance against specific infection or disease. It appears that a signal received after microbe infection triggers different signal transduction pathways.
Publisher: Springer Science & Business Media
ISBN: 9780306456787
Category : Science
Languages : en
Pages : 472
Book Description
Recent years have seen tremendous progress in unraveling the molecular basis of different plant-microbe interactions. Knowledge has accumulated on the mecha nisms of the microbial infection of plants, which can lead to either disease or resistance. The mechanisms developed by plants to interact with microbes, whether viruses, bacteria, or fungi, involve events that can lead to symbiotic association or to disease or tumor formation. Cell death caused by pathogen infection has been of great interest for many years because of its association with plant resistance. There appear to be two types of plant cell death associated with pathogen infection, a rapid hypersensitive cell death localized at the site of infection during an incompatible interaction between a resistant plant and an avirulent pathogen, and a slow, normosensitive plant cell death that spreads beyond the site of infection during some compatible interactions involving a susceptible plant and a virulent, necrogenic pathogen. Plants possess a number of defense mechanisms against infection, such as (i) production of phytoalexin, (ii) formation of hydrolases, (iii) accumulation of hydroxyproline-rich glycoprotein and lignin deposition, (iv) production of pathogen-related proteins, (v) produc tion of oligosaccharides, jasmonic acid, and various other phenolic substances, and (vi) production of toxin-metabolizing enzymes. Based on these observations, insertion of a single suitable gene in a particular plant has yielded promising results in imparting resistance against specific infection or disease. It appears that a signal received after microbe infection triggers different signal transduction pathways.
Rhizosphere Engineering
Author: Ramesh Chandra Dubey
Publisher: Academic Press
ISBN: 0323885950
Category : Technology & Engineering
Languages : en
Pages : 566
Book Description
Rhizosphere Engineering is a guide to applying environmentally sound agronomic practices to improve crop yield while also protecting soil resources. Focusing on the potential and positive impacts of appropriate practices, the book includes the use of beneficial microbes, nanotechnology and metagenomics. Developing and applying techniques that not only enhance yield, but also restore the quality of soil and water using beneficial microbes such as Bacillus, Pseudomonas, vesicular-arbuscular mycorrhiza (VAM) fungi and others are covered, along with new information on utilizing nanotechnology, quorum sensing and other technologies to further advance the science. Designed to fill the gap between research and application, this book is written for advanced students, researchers and those seeking real-world insights for improving agricultural production. - Explores the potential benefits of optimized rhizosphere - Includes metagenomics and their emerging importance - Presents insights into the use of biosurfactants
Publisher: Academic Press
ISBN: 0323885950
Category : Technology & Engineering
Languages : en
Pages : 566
Book Description
Rhizosphere Engineering is a guide to applying environmentally sound agronomic practices to improve crop yield while also protecting soil resources. Focusing on the potential and positive impacts of appropriate practices, the book includes the use of beneficial microbes, nanotechnology and metagenomics. Developing and applying techniques that not only enhance yield, but also restore the quality of soil and water using beneficial microbes such as Bacillus, Pseudomonas, vesicular-arbuscular mycorrhiza (VAM) fungi and others are covered, along with new information on utilizing nanotechnology, quorum sensing and other technologies to further advance the science. Designed to fill the gap between research and application, this book is written for advanced students, researchers and those seeking real-world insights for improving agricultural production. - Explores the potential benefits of optimized rhizosphere - Includes metagenomics and their emerging importance - Presents insights into the use of biosurfactants
Plant Signaling Molecules
Author: M. Iqbal R. Khan
Publisher: Woodhead Publishing
ISBN: 0128164522
Category : Technology & Engineering
Languages : en
Pages : 597
Book Description
Plant Signaling Molecule: Role and Regulation under Stressful Environments explores tolerance mechanisms mediated by signaling molecules in plants for achieving sustainability under changing environmental conditions. Including a wide range of potential molecules, from primary to secondary metabolites, the book presents the status and future prospects of the role and regulation of signaling molecules at physiological, biochemical, molecular and structural level under abiotic stress tolerance. This book is designed to enhance the mechanistic understanding of signaling molecules and will be an important resource for plant biologists in developing stress tolerant crops to achieve sustainability under changing environmental conditions. - Focuses on plant biology under stress conditions - Provides a compendium of knowledge related to plant adaptation, physiology, biochemistry and molecular responses - Identifies treatments that enhance plant tolerance to abiotic stresses - Illustrates specific physiological pathways that are considered key points for plant adaptation or tolerance to abiotic stresses
Publisher: Woodhead Publishing
ISBN: 0128164522
Category : Technology & Engineering
Languages : en
Pages : 597
Book Description
Plant Signaling Molecule: Role and Regulation under Stressful Environments explores tolerance mechanisms mediated by signaling molecules in plants for achieving sustainability under changing environmental conditions. Including a wide range of potential molecules, from primary to secondary metabolites, the book presents the status and future prospects of the role and regulation of signaling molecules at physiological, biochemical, molecular and structural level under abiotic stress tolerance. This book is designed to enhance the mechanistic understanding of signaling molecules and will be an important resource for plant biologists in developing stress tolerant crops to achieve sustainability under changing environmental conditions. - Focuses on plant biology under stress conditions - Provides a compendium of knowledge related to plant adaptation, physiology, biochemistry and molecular responses - Identifies treatments that enhance plant tolerance to abiotic stresses - Illustrates specific physiological pathways that are considered key points for plant adaptation or tolerance to abiotic stresses
Molecular Aspects of Plant-Pathogen Interaction
Author: Archana Singh
Publisher: Springer
ISBN: 9811073716
Category : Science
Languages : en
Pages : 367
Book Description
The book offers an integrated overview of plant–pathogen interactions. It discusses all the steps in the pathway, from the microbe–host-cell interface and the plant’s recognition of the microbe to the plant’s defense response and biochemical alterations to achieve tolerance / resistance. It also sheds light on the classes of pathogens (bacteria, fungus and viruses); effector molecules, such as PAMPs; receptor molecules like PRRs and NBS-LRR proteins; signaling components like MAPKs; regulatory molecules, such as phytohormones and miRNA; transcription factors, such as WRKY; defense-related proteins such as PR-proteins; and defensive metabolites like secondary metabolites. In addition, it examines the role of post-genomics, high-throughput technology (transcriptomics and proteomics) in studying pathogen outbreaks causing crop losses in a number of plants. Providing a comprehensive picture of plant-pathogen interaction, the updated information included in this book is valuable for all those involved in crop improvement.
Publisher: Springer
ISBN: 9811073716
Category : Science
Languages : en
Pages : 367
Book Description
The book offers an integrated overview of plant–pathogen interactions. It discusses all the steps in the pathway, from the microbe–host-cell interface and the plant’s recognition of the microbe to the plant’s defense response and biochemical alterations to achieve tolerance / resistance. It also sheds light on the classes of pathogens (bacteria, fungus and viruses); effector molecules, such as PAMPs; receptor molecules like PRRs and NBS-LRR proteins; signaling components like MAPKs; regulatory molecules, such as phytohormones and miRNA; transcription factors, such as WRKY; defense-related proteins such as PR-proteins; and defensive metabolites like secondary metabolites. In addition, it examines the role of post-genomics, high-throughput technology (transcriptomics and proteomics) in studying pathogen outbreaks causing crop losses in a number of plants. Providing a comprehensive picture of plant-pathogen interaction, the updated information included in this book is valuable for all those involved in crop improvement.
Advances in Molecular Genetics of Plant-Microbe Interactions, Vol.1
Author: H. Hennecke
Publisher: Springer Science & Business Media
ISBN: 9401579342
Category : Science
Languages : en
Pages : 490
Book Description
Research on the interaction between plants and microbes has attracted considerable attention in recent years. The use of modem genetic techniques has now made possible a detailed analysis both of plant and of microbial genes involved in phytopathogenic and beneficial interactions. At the biochemical level, signal molecules and their receptors, either of plant or of microbial origins, have been detected which act in signal transduction pathways or as co-regulators of gene expression. We begin to understand the molecular basis of classical concepts such as gene-for-gene relationships, hypersensitive response, induced resistance, to name just a few. We realize, and will soon exploit, the tremendous potential of the results of this research for practical application, in particular to protect crop plants against diseases and to increase crop yield and quality. This exclung field of research, which is also of truly interdisciplinary nature, is expanding rapidly. A Symposium series has been devoted to it which began in 1982. Recently, the 5th International Symposium on the Molecular Genetics of Plant-Microbe Interactions was held in Interlaken, Switzerland. It brought together 640 scientists from almost 30 different countries who reported their latest research progress in 47 lectures, 10 short oral presentations, and on over 400 high-quality posters. This book presents a collection of papers that comprehensively reflect the major areas under study, explain novel experimental approaches currently in use, highlight significant advances made over the last one or two years but also emphasize the obstacles still ahead of us.
Publisher: Springer Science & Business Media
ISBN: 9401579342
Category : Science
Languages : en
Pages : 490
Book Description
Research on the interaction between plants and microbes has attracted considerable attention in recent years. The use of modem genetic techniques has now made possible a detailed analysis both of plant and of microbial genes involved in phytopathogenic and beneficial interactions. At the biochemical level, signal molecules and their receptors, either of plant or of microbial origins, have been detected which act in signal transduction pathways or as co-regulators of gene expression. We begin to understand the molecular basis of classical concepts such as gene-for-gene relationships, hypersensitive response, induced resistance, to name just a few. We realize, and will soon exploit, the tremendous potential of the results of this research for practical application, in particular to protect crop plants against diseases and to increase crop yield and quality. This exclung field of research, which is also of truly interdisciplinary nature, is expanding rapidly. A Symposium series has been devoted to it which began in 1982. Recently, the 5th International Symposium on the Molecular Genetics of Plant-Microbe Interactions was held in Interlaken, Switzerland. It brought together 640 scientists from almost 30 different countries who reported their latest research progress in 47 lectures, 10 short oral presentations, and on over 400 high-quality posters. This book presents a collection of papers that comprehensively reflect the major areas under study, explain novel experimental approaches currently in use, highlight significant advances made over the last one or two years but also emphasize the obstacles still ahead of us.
Lipid signaling in plants
Author: Xuemin Wang
Publisher: Frontiers E-books
ISBN: 2889191486
Category :
Languages : en
Pages : 249
Book Description
Cell membranes are the initial and focal sites of stimulus perception and signal transduction. Membrane lipids are rich sources for the production of signaling messengers that mediate plant growth, development, and response to nutrient status and stresses. In recent years, substantial progress has been made toward understanding lipid signaling in plants, but many fundamental questions remain: What lipids are signaling messengers or mediators in plants? How are the signaling lipids produced and metabolized? In what plant cellular and physiological processes are various lipid mediators involved? How do they carry out their signaling functions? How do lipid signaling networks contribute to modulating plant growth, development, and responses to hormones and stresses? In this Research Topic issue, we invite the broad plant community to address the above questions.Cell membranes are the initial and focal sites of stimulus perception and signal transduction. Membrane lipids are rich sources for the production of signaling messengers that mediate plant growth, development, and response to nutrient status and stresses. In recent years, substantial progress has been made toward understanding lipid signaling in plants, but many fundamental questions remain: What lipids are signaling messengers or mediators in plants? How are the signaling lipids produced and metabolized? In what plant cellular and physiological processes are various lipid mediators involved? How do they carry out their signaling functions? How do lipid signaling networks contribute to modulating plant growth, development, and responses to hormones and stresses? In this Research Topic issue, we invite the broad plant community to address the above questions.
Publisher: Frontiers E-books
ISBN: 2889191486
Category :
Languages : en
Pages : 249
Book Description
Cell membranes are the initial and focal sites of stimulus perception and signal transduction. Membrane lipids are rich sources for the production of signaling messengers that mediate plant growth, development, and response to nutrient status and stresses. In recent years, substantial progress has been made toward understanding lipid signaling in plants, but many fundamental questions remain: What lipids are signaling messengers or mediators in plants? How are the signaling lipids produced and metabolized? In what plant cellular and physiological processes are various lipid mediators involved? How do they carry out their signaling functions? How do lipid signaling networks contribute to modulating plant growth, development, and responses to hormones and stresses? In this Research Topic issue, we invite the broad plant community to address the above questions.Cell membranes are the initial and focal sites of stimulus perception and signal transduction. Membrane lipids are rich sources for the production of signaling messengers that mediate plant growth, development, and response to nutrient status and stresses. In recent years, substantial progress has been made toward understanding lipid signaling in plants, but many fundamental questions remain: What lipids are signaling messengers or mediators in plants? How are the signaling lipids produced and metabolized? In what plant cellular and physiological processes are various lipid mediators involved? How do they carry out their signaling functions? How do lipid signaling networks contribute to modulating plant growth, development, and responses to hormones and stresses? In this Research Topic issue, we invite the broad plant community to address the above questions.