Author: Tai-Ping Liu
Publisher:
ISBN: 9781470420321
Category : Conservation laws (Mathematics)
Languages : en
Pages : 168
Book Description
We study the perturbation of a shock wave in conservation laws with physical viscosity. We obtain the detailed pointwise estimates of the solutions. In particular, we show that the solution converges to a translated shock profile. The strength of the perturbation and that of the shock are assumed to be small, but independent. Our assumptions on the viscosity matrix are general so that our results apply to the Navier-Stokes equations for the compressible fluid and the full system of magnetohydrodynamics, including the cases of multiple eigenvalues in the transversal fields, as long as the shock is classical. Our analysis depends on accurate construction of an approximate Green's function. The form of the ansatz for the perturbation is carefully constructed and is sufficiently tight so that we can close the nonlinear term through the Duhamel's principle.
Shock Waves in Conservation Laws with Physical Viscosity
Author: Tai-Ping Liu
Publisher:
ISBN: 9781470420321
Category : Conservation laws (Mathematics)
Languages : en
Pages : 168
Book Description
We study the perturbation of a shock wave in conservation laws with physical viscosity. We obtain the detailed pointwise estimates of the solutions. In particular, we show that the solution converges to a translated shock profile. The strength of the perturbation and that of the shock are assumed to be small, but independent. Our assumptions on the viscosity matrix are general so that our results apply to the Navier-Stokes equations for the compressible fluid and the full system of magnetohydrodynamics, including the cases of multiple eigenvalues in the transversal fields, as long as the shock is classical. Our analysis depends on accurate construction of an approximate Green's function. The form of the ansatz for the perturbation is carefully constructed and is sufficiently tight so that we can close the nonlinear term through the Duhamel's principle.
Publisher:
ISBN: 9781470420321
Category : Conservation laws (Mathematics)
Languages : en
Pages : 168
Book Description
We study the perturbation of a shock wave in conservation laws with physical viscosity. We obtain the detailed pointwise estimates of the solutions. In particular, we show that the solution converges to a translated shock profile. The strength of the perturbation and that of the shock are assumed to be small, but independent. Our assumptions on the viscosity matrix are general so that our results apply to the Navier-Stokes equations for the compressible fluid and the full system of magnetohydrodynamics, including the cases of multiple eigenvalues in the transversal fields, as long as the shock is classical. Our analysis depends on accurate construction of an approximate Green's function. The form of the ansatz for the perturbation is carefully constructed and is sufficiently tight so that we can close the nonlinear term through the Duhamel's principle.
Hyperbolic and Viscous Conservation Laws
Author: Tai-Ping Liu
Publisher: SIAM
ISBN: 0898714362
Category : Mathematics
Languages : en
Pages : 78
Book Description
An in-depth analysis of wave interactions for general systems of hyperbolic and viscous conservation laws.
Publisher: SIAM
ISBN: 0898714362
Category : Mathematics
Languages : en
Pages : 78
Book Description
An in-depth analysis of wave interactions for general systems of hyperbolic and viscous conservation laws.
Nonlinear Partial Differential Equations for Scientists and Engineers
Author: Lokenath Debnath
Publisher: Springer Science & Business Media
ISBN: 1489928464
Category : Mathematics
Languages : en
Pages : 602
Book Description
This expanded and revised second edition is a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied applications. Building upon the successful material of the first book, this edition contains updated modern examples and applications from diverse fields. Methods and properties of solutions, along with their physical significance, help make the book more useful for a diverse readership. The book is an exceptionally complete text/reference for graduates, researchers, and professionals in mathematics, physics, and engineering.
Publisher: Springer Science & Business Media
ISBN: 1489928464
Category : Mathematics
Languages : en
Pages : 602
Book Description
This expanded and revised second edition is a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied applications. Building upon the successful material of the first book, this edition contains updated modern examples and applications from diverse fields. Methods and properties of solutions, along with their physical significance, help make the book more useful for a diverse readership. The book is an exceptionally complete text/reference for graduates, researchers, and professionals in mathematics, physics, and engineering.
Shock Waves
Author: Tai-Ping Liu
Publisher: American Mathematical Soc.
ISBN: 1470466252
Category : Education
Languages : en
Pages : 437
Book Description
This book presents the fundamentals of the shock wave theory. The first part of the book, Chapters 1 through 5, covers the basic elements of the shock wave theory by analyzing the scalar conservation laws. The main focus of the analysis is on the explicit solution behavior. This first part of the book requires only a course in multi-variable calculus, and can be used as a text for an undergraduate topics course. In the second part of the book, Chapters 6 through 9, this general theory is used to study systems of hyperbolic conservation laws. This is a most significant well-posedness theory for weak solutions of quasilinear evolutionary partial differential equations. The final part of the book, Chapters 10 through 14, returns to the original subject of the shock wave theory by focusing on specific physical models. Potentially interesting questions and research directions are also raised in these chapters. The book can serve as an introductory text for advanced undergraduate students and for graduate students in mathematics, engineering, and physical sciences. Each chapter ends with suggestions for further reading and exercises for students.
Publisher: American Mathematical Soc.
ISBN: 1470466252
Category : Education
Languages : en
Pages : 437
Book Description
This book presents the fundamentals of the shock wave theory. The first part of the book, Chapters 1 through 5, covers the basic elements of the shock wave theory by analyzing the scalar conservation laws. The main focus of the analysis is on the explicit solution behavior. This first part of the book requires only a course in multi-variable calculus, and can be used as a text for an undergraduate topics course. In the second part of the book, Chapters 6 through 9, this general theory is used to study systems of hyperbolic conservation laws. This is a most significant well-posedness theory for weak solutions of quasilinear evolutionary partial differential equations. The final part of the book, Chapters 10 through 14, returns to the original subject of the shock wave theory by focusing on specific physical models. Potentially interesting questions and research directions are also raised in these chapters. The book can serve as an introductory text for advanced undergraduate students and for graduate students in mathematics, engineering, and physical sciences. Each chapter ends with suggestions for further reading and exercises for students.
Hyperbolic and Viscous Conservation Laws
Author: Tai-Ping Liu
Publisher: SIAM
ISBN: 9780898719420
Category : Mathematics
Languages : en
Pages : 79
Book Description
Here is an in-depth, up-to-date analysis of wave interactions for general systems of hyperbolic and viscous conservation laws. This self-contained study of shock waves explains the new wave phenomena from both a physical and a mathematical standpoint. The analysis is useful for the study of various physical situations, including nonlinear elasticity, magnetohydrodynamics, multiphase flows, combustion, and classical gas dynamics shocks. The central issue throughout the book is the understanding of nonlinear wave interactions.
Publisher: SIAM
ISBN: 9780898719420
Category : Mathematics
Languages : en
Pages : 79
Book Description
Here is an in-depth, up-to-date analysis of wave interactions for general systems of hyperbolic and viscous conservation laws. This self-contained study of shock waves explains the new wave phenomena from both a physical and a mathematical standpoint. The analysis is useful for the study of various physical situations, including nonlinear elasticity, magnetohydrodynamics, multiphase flows, combustion, and classical gas dynamics shocks. The central issue throughout the book is the understanding of nonlinear wave interactions.
Numerical Methods for Conservation Laws
Author: LEVEQUE
Publisher: Birkhäuser
ISBN: 3034851162
Category : Science
Languages : en
Pages : 221
Book Description
These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.
Publisher: Birkhäuser
ISBN: 3034851162
Category : Science
Languages : en
Pages : 221
Book Description
These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.
Systems of Conservation Laws 1
Author: Denis Serre
Publisher: Cambridge University Press
ISBN: 9781139425414
Category : Mathematics
Languages : en
Pages : 290
Book Description
Systems of conservation laws arise naturally in physics and chemistry. To understand them and their consequences (shock waves, finite velocity wave propagation) properly in mathematical terms requires, however, knowledge of a broad range of topics. This book sets up the foundations of the modern theory of conservation laws, describing the physical models and mathematical methods, leading to the Glimm scheme. Building on this the author then takes the reader to the current state of knowledge in the subject. The maximum principle is considered from the viewpoint of numerical schemes and also in terms of viscous approximation. Small waves are studied using geometrical optics methods. Finally, the initial-boundary problem is considered in depth. Throughout, the presentation is reasonably self-contained, with large numbers of exercises and full discussion of all the ideas. This will make it ideal as a text for graduate courses in the area of partial differential equations.
Publisher: Cambridge University Press
ISBN: 9781139425414
Category : Mathematics
Languages : en
Pages : 290
Book Description
Systems of conservation laws arise naturally in physics and chemistry. To understand them and their consequences (shock waves, finite velocity wave propagation) properly in mathematical terms requires, however, knowledge of a broad range of topics. This book sets up the foundations of the modern theory of conservation laws, describing the physical models and mathematical methods, leading to the Glimm scheme. Building on this the author then takes the reader to the current state of knowledge in the subject. The maximum principle is considered from the viewpoint of numerical schemes and also in terms of viscous approximation. Small waves are studied using geometrical optics methods. Finally, the initial-boundary problem is considered in depth. Throughout, the presentation is reasonably self-contained, with large numbers of exercises and full discussion of all the ideas. This will make it ideal as a text for graduate courses in the area of partial differential equations.
Viscous Profiles and Numerical Methods for Shock Waves
Author: Michael Shearer
Publisher: SIAM
ISBN: 9780898712834
Category : Science
Languages : en
Pages : 272
Book Description
One strongly represented theme is the power of ideas from dynamical systems that are being adapted and developed in the context of shock waves.
Publisher: SIAM
ISBN: 9780898712834
Category : Science
Languages : en
Pages : 272
Book Description
One strongly represented theme is the power of ideas from dynamical systems that are being adapted and developed in the context of shock waves.
Hyperbolic Systems of Conservation Laws
Author: Philippe G. LeFloch
Publisher: Birkhäuser
ISBN: 3034881509
Category : Mathematics
Languages : en
Pages : 301
Book Description
This book examines the well-posedness theory for nonlinear hyperbolic systems of conservation laws, recently completed by the author together with his collaborators. It covers the existence, uniqueness, and continuous dependence of classical entropy solutions. It also introduces the reader to the developing theory of nonclassical (undercompressive) entropy solutions. The systems of partial differential equations under consideration arise in many areas of continuum physics.
Publisher: Birkhäuser
ISBN: 3034881509
Category : Mathematics
Languages : en
Pages : 301
Book Description
This book examines the well-posedness theory for nonlinear hyperbolic systems of conservation laws, recently completed by the author together with his collaborators. It covers the existence, uniqueness, and continuous dependence of classical entropy solutions. It also introduces the reader to the developing theory of nonclassical (undercompressive) entropy solutions. The systems of partial differential equations under consideration arise in many areas of continuum physics.
Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables
Author: A. Majda
Publisher: Springer Science & Business Media
ISBN: 1461211166
Category : Science
Languages : en
Pages : 167
Book Description
Conservation laws arise from the modeling of physical processes through the following three steps: 1) The appropriate physical balance laws are derived for m-phy- t cal quantities, ul""'~ with u = (ul' ... ,u ) and u(x,t) defined m for x = (xl""'~) E RN (N = 1,2, or 3), t > 0 and with the values m u(x,t) lying in an open subset, G, of R , the state space. The state space G arises because physical quantities such as the density or total energy should always be positive; thus the values of u are often con strained to an open set G. 2) The flux functions appearing in these balance laws are idealized through prescribed nonlinear functions, F.(u), mapping G into J j = 1, ..• ,N while source terms are defined by S(u,x,t) with S a given smooth function of these arguments with values in Rm. In parti- lar, the detailed microscopic effects of diffusion and dissipation are ignored. 3) A generalized version of the principle of virtual work is applied (see Antman [1]). The formal result of applying the three steps (1)-(3) is that the m physical quantities u define a weak solution of an m x m system of conservation laws, o I + N(Wt'u + r W ·F.(u) + W·S(u,x,t))dxdt (1.1) R xR j=l Xj J for all W E C~(RN x R+), W(x,t) E Rm.
Publisher: Springer Science & Business Media
ISBN: 1461211166
Category : Science
Languages : en
Pages : 167
Book Description
Conservation laws arise from the modeling of physical processes through the following three steps: 1) The appropriate physical balance laws are derived for m-phy- t cal quantities, ul""'~ with u = (ul' ... ,u ) and u(x,t) defined m for x = (xl""'~) E RN (N = 1,2, or 3), t > 0 and with the values m u(x,t) lying in an open subset, G, of R , the state space. The state space G arises because physical quantities such as the density or total energy should always be positive; thus the values of u are often con strained to an open set G. 2) The flux functions appearing in these balance laws are idealized through prescribed nonlinear functions, F.(u), mapping G into J j = 1, ..• ,N while source terms are defined by S(u,x,t) with S a given smooth function of these arguments with values in Rm. In parti- lar, the detailed microscopic effects of diffusion and dissipation are ignored. 3) A generalized version of the principle of virtual work is applied (see Antman [1]). The formal result of applying the three steps (1)-(3) is that the m physical quantities u define a weak solution of an m x m system of conservation laws, o I + N(Wt'u + r W ·F.(u) + W·S(u,x,t))dxdt (1.1) R xR j=l Xj J for all W E C~(RN x R+), W(x,t) E Rm.