Author: Joel Smoller
Publisher: Springer Science & Business Media
ISBN: 1461208734
Category : Mathematics
Languages : en
Pages : 650
Book Description
For this edition, a number of typographical errors and minor slip-ups have been corrected. In addition, following the persistent encouragement of Olga Oleinik, I have added a new chapter, Chapter 25, which I titled "Recent Results." This chapter is divided into four sections, and in these I have discussed what I consider to be some of the important developments which have come about since the writing of the first edition. Section I deals with reaction-diffusion equations, and in it are described both the work of C. Jones, on the stability of the travelling wave for the Fitz-Hugh-Nagumo equations, and symmetry-breaking bifurcations. Section II deals with some recent results in shock-wave theory. The main topics considered are L. Tartar's notion of compensated compactness, together with its application to pairs of conservation laws, and T.-P. Liu's work on the stability of viscous profiles for shock waves. In the next section, Conley's connection index and connection matrix are described; these general notions are useful in con structing travelling waves for systems of nonlinear equations. The final sec tion, Section IV, is devoted to the very recent results of C. Jones and R. Gardner, whereby they construct a general theory enabling them to locate the point spectrum of a wide class of linear operators which arise in stability problems for travelling waves. Their theory is general enough to be applica ble to many interesting reaction-diffusion systems.
Shock Waves and Reaction—Diffusion Equations
Author: Joel Smoller
Publisher: Springer Science & Business Media
ISBN: 1461208734
Category : Mathematics
Languages : en
Pages : 650
Book Description
For this edition, a number of typographical errors and minor slip-ups have been corrected. In addition, following the persistent encouragement of Olga Oleinik, I have added a new chapter, Chapter 25, which I titled "Recent Results." This chapter is divided into four sections, and in these I have discussed what I consider to be some of the important developments which have come about since the writing of the first edition. Section I deals with reaction-diffusion equations, and in it are described both the work of C. Jones, on the stability of the travelling wave for the Fitz-Hugh-Nagumo equations, and symmetry-breaking bifurcations. Section II deals with some recent results in shock-wave theory. The main topics considered are L. Tartar's notion of compensated compactness, together with its application to pairs of conservation laws, and T.-P. Liu's work on the stability of viscous profiles for shock waves. In the next section, Conley's connection index and connection matrix are described; these general notions are useful in con structing travelling waves for systems of nonlinear equations. The final sec tion, Section IV, is devoted to the very recent results of C. Jones and R. Gardner, whereby they construct a general theory enabling them to locate the point spectrum of a wide class of linear operators which arise in stability problems for travelling waves. Their theory is general enough to be applica ble to many interesting reaction-diffusion systems.
Publisher: Springer Science & Business Media
ISBN: 1461208734
Category : Mathematics
Languages : en
Pages : 650
Book Description
For this edition, a number of typographical errors and minor slip-ups have been corrected. In addition, following the persistent encouragement of Olga Oleinik, I have added a new chapter, Chapter 25, which I titled "Recent Results." This chapter is divided into four sections, and in these I have discussed what I consider to be some of the important developments which have come about since the writing of the first edition. Section I deals with reaction-diffusion equations, and in it are described both the work of C. Jones, on the stability of the travelling wave for the Fitz-Hugh-Nagumo equations, and symmetry-breaking bifurcations. Section II deals with some recent results in shock-wave theory. The main topics considered are L. Tartar's notion of compensated compactness, together with its application to pairs of conservation laws, and T.-P. Liu's work on the stability of viscous profiles for shock waves. In the next section, Conley's connection index and connection matrix are described; these general notions are useful in con structing travelling waves for systems of nonlinear equations. The final sec tion, Section IV, is devoted to the very recent results of C. Jones and R. Gardner, whereby they construct a general theory enabling them to locate the point spectrum of a wide class of linear operators which arise in stability problems for travelling waves. Their theory is general enough to be applica ble to many interesting reaction-diffusion systems.
Shock Waves and Reaction—Diffusion Equations
Author: Joel Smoller
Publisher: Springer Science & Business Media
ISBN: 1468401521
Category : Science
Languages : en
Pages : 596
Book Description
. . . the progress of physics will to a large extent depend on the progress of nonlinear mathe matics, of methods to solve nonlinear equations . . . and therefore we can learn by comparing different nonlinear problems. WERNER HEISENBERG I undertook to write this book for two reasons. First, I wanted to make easily available the basics of both the theory of hyperbolic conservation laws and the theory of systems of reaction-diffusion equations, including the generalized Morse theory as developed by C. Conley. These important subjects seem difficult to learn since the results are scattered throughout the research journals. 1 Second, I feel that there is a need to present the modern methods and ideas in these fields to a wider audience than just mathe maticians. Thus, the book has some rather sophisticated aspects to it, as well as certain textbook aspects. The latter serve to explain, somewhat, the reason that a book with the title Shock Waves and Reaction-Diffusion Equations has the first nine chapters devoted to linear partial differential equations. More precisely, I have found from my classroom experience that it is far easier to grasp the subtleties of nonlinear partial differential equations after one has an understanding of the basic notions in the linear theory. This book is divided into four main parts: linear theory, reaction diffusion equations, shock wave theory, and the Conley index, in that order. Thus, the text begins with a discussion of ill-posed problems.
Publisher: Springer Science & Business Media
ISBN: 1468401521
Category : Science
Languages : en
Pages : 596
Book Description
. . . the progress of physics will to a large extent depend on the progress of nonlinear mathe matics, of methods to solve nonlinear equations . . . and therefore we can learn by comparing different nonlinear problems. WERNER HEISENBERG I undertook to write this book for two reasons. First, I wanted to make easily available the basics of both the theory of hyperbolic conservation laws and the theory of systems of reaction-diffusion equations, including the generalized Morse theory as developed by C. Conley. These important subjects seem difficult to learn since the results are scattered throughout the research journals. 1 Second, I feel that there is a need to present the modern methods and ideas in these fields to a wider audience than just mathe maticians. Thus, the book has some rather sophisticated aspects to it, as well as certain textbook aspects. The latter serve to explain, somewhat, the reason that a book with the title Shock Waves and Reaction-Diffusion Equations has the first nine chapters devoted to linear partial differential equations. More precisely, I have found from my classroom experience that it is far easier to grasp the subtleties of nonlinear partial differential equations after one has an understanding of the basic notions in the linear theory. This book is divided into four main parts: linear theory, reaction diffusion equations, shock wave theory, and the Conley index, in that order. Thus, the text begins with a discussion of ill-posed problems.
Shock Waves and Reaction-Diffusion Equations
Author: J. Smoller
Publisher: Springer
ISBN: 9781468401547
Category : Acoustics
Languages : en
Pages : 0
Book Description
... The progress of physics will to a large extent depend on the progress of nonlinear mathe matics, of methods to solve nonlinear equations ... and therefore we can learn by comparing different nonlinear problems. WERNER HEISENBERG I undertook to write this book for two reasons. First, I wanted to make easily available the basics of both the theory of hyperbolic conservation laws and the theory of systems of reaction-diffusion equations, including the generalized Morse theory as developed by C. Conley. These important subjects seem difficult to learn since the results are scattered throughout the research journals. 1 Second, I feel that there is a need to present the modern methods and ideas in these fields to a wider audience than just mathe maticians. Thus, the book has some rather sophisticated aspects to it, as well as certain textbook aspects. The latter serve to explain, somewhat, the reason that a book with the title Shock Waves and Reaction-Diffusion Equations has the first nine chapters devoted to linear partial differential equations. More precisely, I have found from my classroom experience that it is far easier to grasp the subtleties of nonlinear partial differential equations after one has an understanding of the basic notions in the linear theory. This book is divided into four main parts: linear theory, reaction diffusion equations, shock wave theory, and the Conley index, in that order. Thus, the text begins with a discussion of ill-posed problems.
Publisher: Springer
ISBN: 9781468401547
Category : Acoustics
Languages : en
Pages : 0
Book Description
... The progress of physics will to a large extent depend on the progress of nonlinear mathe matics, of methods to solve nonlinear equations ... and therefore we can learn by comparing different nonlinear problems. WERNER HEISENBERG I undertook to write this book for two reasons. First, I wanted to make easily available the basics of both the theory of hyperbolic conservation laws and the theory of systems of reaction-diffusion equations, including the generalized Morse theory as developed by C. Conley. These important subjects seem difficult to learn since the results are scattered throughout the research journals. 1 Second, I feel that there is a need to present the modern methods and ideas in these fields to a wider audience than just mathe maticians. Thus, the book has some rather sophisticated aspects to it, as well as certain textbook aspects. The latter serve to explain, somewhat, the reason that a book with the title Shock Waves and Reaction-Diffusion Equations has the first nine chapters devoted to linear partial differential equations. More precisely, I have found from my classroom experience that it is far easier to grasp the subtleties of nonlinear partial differential equations after one has an understanding of the basic notions in the linear theory. This book is divided into four main parts: linear theory, reaction diffusion equations, shock wave theory, and the Conley index, in that order. Thus, the text begins with a discussion of ill-posed problems.
Shock Waves and Reaction-diffusion Equations
Author: Joel Smoller
Publisher:
ISBN: 9783540942597
Category : Ondes de choc
Languages : en
Pages : 632
Book Description
Publisher:
ISBN: 9783540942597
Category : Ondes de choc
Languages : en
Pages : 632
Book Description
Dissipative Solitons in Reaction Diffusion Systems
Author: Andreas Liehr
Publisher: Springer Science & Business Media
ISBN: 3642312519
Category : Science
Languages : en
Pages : 227
Book Description
Why writing a book about a specialized task of the large topic of complex systems? And who will read it? The answer is simple: The fascination for a didactically valuable point of view, the elegance of a closed concept and the lack of a comprehensive disquisition. The fascinating part is that field equations can have localized solutions exhibiting the typical characteristics of particles. Regarding the field equations this book focuses on, the field phenomenon of localized solutions can be described in the context of a particle formalism, which leads to a set of ordinary differential equations covering the time evolution of the position and the velocity of each particle. Moreover, starting from these particle dynamics and making the transition to many body systems, one considers typical phenomena of many body systems as shock waves and phase transitions, which themselves can be described as field phenomena. Such transitions between different level of modelling are well known from conservative systems, where localized solutions of quantum field theory lead to the mechanisms of elementary particle interaction and from this to field equations describing the properties of matter. However, in dissipative systems such transitions have not been considered yet, which is adjusted by the presented book. The elegance of a closed concept starts with the observation of self-organized current filaments in a semiconductor gas discharge system. These filaments move on random paths and exhibit certain particle features like scattering or the formation of bound states. Neither the reasons for the propagation of the filaments nor the laws of the interaction between the filaments can be registered by direct observations. Therefore a model is established, which is phenomenological in the first instance due to the complexity of the experimental system. This model allows to understand the existence of localized structures, their mechanisms of movement, and their interaction, at least, on a qualitative level. But this model is also the starting point for developing a data analysis method that enables the detection of movement and interaction mechanisms of the investigated localized solutions. The topic is rounded of by applying the data analysis to real experimental data and comparing the experimental observations to the predictions of the model. A comprehensive publication covering the interesting topic of localized solutions in reaction diffusion systems in its width and its relation to the well known phenomena of spirals and patterns does not yet exist, and this is the third reason for writing this book. Although the book focuses on a specific experimental system the model equations are as simple as possible so that the discussed methods should be adaptable to a large class of systems showing particle-like structures. Therefore, this book should attract not only the experienced scientist, who is interested in self-organization phenomena, but also the student, who would like to understand the investigation of a complex system on the basis of a continuous description.
Publisher: Springer Science & Business Media
ISBN: 3642312519
Category : Science
Languages : en
Pages : 227
Book Description
Why writing a book about a specialized task of the large topic of complex systems? And who will read it? The answer is simple: The fascination for a didactically valuable point of view, the elegance of a closed concept and the lack of a comprehensive disquisition. The fascinating part is that field equations can have localized solutions exhibiting the typical characteristics of particles. Regarding the field equations this book focuses on, the field phenomenon of localized solutions can be described in the context of a particle formalism, which leads to a set of ordinary differential equations covering the time evolution of the position and the velocity of each particle. Moreover, starting from these particle dynamics and making the transition to many body systems, one considers typical phenomena of many body systems as shock waves and phase transitions, which themselves can be described as field phenomena. Such transitions between different level of modelling are well known from conservative systems, where localized solutions of quantum field theory lead to the mechanisms of elementary particle interaction and from this to field equations describing the properties of matter. However, in dissipative systems such transitions have not been considered yet, which is adjusted by the presented book. The elegance of a closed concept starts with the observation of self-organized current filaments in a semiconductor gas discharge system. These filaments move on random paths and exhibit certain particle features like scattering or the formation of bound states. Neither the reasons for the propagation of the filaments nor the laws of the interaction between the filaments can be registered by direct observations. Therefore a model is established, which is phenomenological in the first instance due to the complexity of the experimental system. This model allows to understand the existence of localized structures, their mechanisms of movement, and their interaction, at least, on a qualitative level. But this model is also the starting point for developing a data analysis method that enables the detection of movement and interaction mechanisms of the investigated localized solutions. The topic is rounded of by applying the data analysis to real experimental data and comparing the experimental observations to the predictions of the model. A comprehensive publication covering the interesting topic of localized solutions in reaction diffusion systems in its width and its relation to the well known phenomena of spirals and patterns does not yet exist, and this is the third reason for writing this book. Although the book focuses on a specific experimental system the model equations are as simple as possible so that the discussed methods should be adaptable to a large class of systems showing particle-like structures. Therefore, this book should attract not only the experienced scientist, who is interested in self-organization phenomena, but also the student, who would like to understand the investigation of a complex system on the basis of a continuous description.
Chemical Oscillations, Waves, and Turbulence
Author: Y. Kuramoto
Publisher: Springer Science & Business Media
ISBN: 3642696899
Category : Science
Languages : en
Pages : 165
Book Description
Tbis book is intended to provide a few asymptotic methods which can be applied to the dynamics of self-oscillating fields of the reaction-diffusion type and of some related systems. Such systems, forming cooperative fields of a large num of interacting similar subunits, are considered as typical synergetic systems. ber Because each local subunit itself represents an active dynamical system function ing only in far-from-equilibrium situations, the entire system is capable of showing a variety of curious pattern formations and turbulencelike behaviors quite unfamiliar in thermodynamic cooperative fields. I personally believe that the nonlinear dynamics, deterministic or statistical, of fields composed of similar active (Le., non-equilibrium) elements will form an extremely attractive branch of physics in the near future. For the study of non-equilibrium cooperative systems, some theoretical guid ing principle would be highly desirable. In this connection, this book pushes for ward a particular physical viewpoint based on the slaving principle. The dis covery of tbis principle in non-equilibrium phase transitions, especially in lasers, was due to Hermann Haken. The great utility of this concept will again be dem onstrated in tbis book for the fields of coupled nonlinear oscillators.
Publisher: Springer Science & Business Media
ISBN: 3642696899
Category : Science
Languages : en
Pages : 165
Book Description
Tbis book is intended to provide a few asymptotic methods which can be applied to the dynamics of self-oscillating fields of the reaction-diffusion type and of some related systems. Such systems, forming cooperative fields of a large num of interacting similar subunits, are considered as typical synergetic systems. ber Because each local subunit itself represents an active dynamical system function ing only in far-from-equilibrium situations, the entire system is capable of showing a variety of curious pattern formations and turbulencelike behaviors quite unfamiliar in thermodynamic cooperative fields. I personally believe that the nonlinear dynamics, deterministic or statistical, of fields composed of similar active (Le., non-equilibrium) elements will form an extremely attractive branch of physics in the near future. For the study of non-equilibrium cooperative systems, some theoretical guid ing principle would be highly desirable. In this connection, this book pushes for ward a particular physical viewpoint based on the slaving principle. The dis covery of tbis principle in non-equilibrium phase transitions, especially in lasers, was due to Hermann Haken. The great utility of this concept will again be dem onstrated in tbis book for the fields of coupled nonlinear oscillators.
A Course on Nonlinear Waves
Author: S.S. Shen
Publisher: Springer Science & Business Media
ISBN: 9401121028
Category : Mathematics
Languages : en
Pages : 335
Book Description
The aim of this book is to give a self-contained introduction to the mathe matical analysis and physical explanations of some basic nonlinear wave phe nomena. This volume grew out of lecture notes for graduate courf;!es which I gave at the University of Alberta, the University of Saskatchewan, ·and Texas A&M University. As an introduction it is not intended to be exhaustive iQ its choice of material, but rather to convey to interested readers a basic; yet practical, methodology as well as some of the more important results obtained since the 1950's. Although the primary purpose of this volume is to serve as a textbook, it should be useful to anyone who wishes to understand or conduct research into nonlinear waves. Here, for the first time, materials on X-ray crystallography and the forced Korteweg-de Vries equation are incorporated naturally into a textbook on non linear waves. Another characteristic feature of the book is the inclusion of four symbolic calculation programs written in MATHEMATICA. They emphasize outcomes rather than numerical methods and provide certain symbolic and nu merical results related to solitons. Requiring only one or two commands to run, these programs have user-friendly interfaces. For example, to get the explicit expression of the 2-soliton of the Korteweg-de Vries equation, one only needs to type in soliton[2] when using the program solipac.m.
Publisher: Springer Science & Business Media
ISBN: 9401121028
Category : Mathematics
Languages : en
Pages : 335
Book Description
The aim of this book is to give a self-contained introduction to the mathe matical analysis and physical explanations of some basic nonlinear wave phe nomena. This volume grew out of lecture notes for graduate courf;!es which I gave at the University of Alberta, the University of Saskatchewan, ·and Texas A&M University. As an introduction it is not intended to be exhaustive iQ its choice of material, but rather to convey to interested readers a basic; yet practical, methodology as well as some of the more important results obtained since the 1950's. Although the primary purpose of this volume is to serve as a textbook, it should be useful to anyone who wishes to understand or conduct research into nonlinear waves. Here, for the first time, materials on X-ray crystallography and the forced Korteweg-de Vries equation are incorporated naturally into a textbook on non linear waves. Another characteristic feature of the book is the inclusion of four symbolic calculation programs written in MATHEMATICA. They emphasize outcomes rather than numerical methods and provide certain symbolic and nu merical results related to solitons. Requiring only one or two commands to run, these programs have user-friendly interfaces. For example, to get the explicit expression of the 2-soliton of the Korteweg-de Vries equation, one only needs to type in soliton[2] when using the program solipac.m.
Mathematical Analysis of Shock Wave Reflection
Author: Shuxing Chen
Publisher: Springer Nature
ISBN: 9811577528
Category : Mathematics
Languages : en
Pages : 260
Book Description
This book is aimed to make careful analysis to various mathematical problems derived from shock reflection by using the theory of partial differential equations. The occurrence, propagation and reflection of shock waves are important phenomena in fluid dynamics. Comparing the plenty of studies of physical experiments and numerical simulations on this subject, this book makes main efforts to develop the related theory of mathematical analysis, which is rather incomplete so far. The book first introduces some basic knowledge on the system of compressible flow and shock waves, then presents the concept of shock polar and its properties, particularly the properties of the shock polar for potential flow equation, which are first systematically presented and proved in this book. Mathematical analysis of regular reflection and Mach reflection in steady and unsteady flow are the most essential parts of this book. To give challenges in future research, some long-standing open problems are listed in the end. This book is attractive to researchers in the fields of partial differential equations, system of conservation laws, fluid dynamics, and shock theory.
Publisher: Springer Nature
ISBN: 9811577528
Category : Mathematics
Languages : en
Pages : 260
Book Description
This book is aimed to make careful analysis to various mathematical problems derived from shock reflection by using the theory of partial differential equations. The occurrence, propagation and reflection of shock waves are important phenomena in fluid dynamics. Comparing the plenty of studies of physical experiments and numerical simulations on this subject, this book makes main efforts to develop the related theory of mathematical analysis, which is rather incomplete so far. The book first introduces some basic knowledge on the system of compressible flow and shock waves, then presents the concept of shock polar and its properties, particularly the properties of the shock polar for potential flow equation, which are first systematically presented and proved in this book. Mathematical analysis of regular reflection and Mach reflection in steady and unsteady flow are the most essential parts of this book. To give challenges in future research, some long-standing open problems are listed in the end. This book is attractive to researchers in the fields of partial differential equations, system of conservation laws, fluid dynamics, and shock theory.
Tutorials in Mathematical Biosciences IV
Author: Avner Friedman
Publisher: Springer
ISBN: 3540743316
Category : Mathematics
Languages : en
Pages : 215
Book Description
This book offers an introduction to fast growing research areas in evolution of species, population genetics, ecological models, and population dynamics. It reviews the concept and methodologies of phylogenetic trees, introduces ecological models, examines a broad range of ongoing research in population dynamics, and deals with gene frequencies under the action of migration and selection. The book features computational schemes, illustrations, and mathematical theorems.
Publisher: Springer
ISBN: 3540743316
Category : Mathematics
Languages : en
Pages : 215
Book Description
This book offers an introduction to fast growing research areas in evolution of species, population genetics, ecological models, and population dynamics. It reviews the concept and methodologies of phylogenetic trees, introduces ecological models, examines a broad range of ongoing research in population dynamics, and deals with gene frequencies under the action of migration and selection. The book features computational schemes, illustrations, and mathematical theorems.
Reaction-diffusion Waves
Author: Arnaud Ducrot
Publisher: Editions Publibook
ISBN: 2748346319
Category : Differential operators
Languages : en
Pages : 119
Book Description
Publisher: Editions Publibook
ISBN: 2748346319
Category : Differential operators
Languages : en
Pages : 119
Book Description