Onsite Wastewater Treatment Systems Manual

Onsite Wastewater Treatment Systems Manual PDF Author:
Publisher:
ISBN:
Category : Sewage
Languages : en
Pages : 378

Get Book Here

Book Description
"This manual contains overview information on treatment technologies, installation practices, and past performance."--Introduction.

Onsite Wastewater Treatment Systems Manual

Onsite Wastewater Treatment Systems Manual PDF Author:
Publisher:
ISBN:
Category : Sewage
Languages : en
Pages : 378

Get Book Here

Book Description
"This manual contains overview information on treatment technologies, installation practices, and past performance."--Introduction.

Sewer Management Systems

Sewer Management Systems PDF Author: Thomas J. Day
Publisher: John Wiley & Sons
ISBN: 9780471317999
Category : Technology & Engineering
Languages : en
Pages : 404

Get Book Here

Book Description
How to manage the most important part of a city's internalinfrastructure--its sewer systems The operation and maintenance of modern sewer systems have not keptpace with technological revolutions everywhere--until now.Utilizing a combination of computerized management tools,monitoring systems, and other intelligent equipment, today'sautomated sewer management systems allow designers, managers,operators, and investors to get continuous data feeds on sewerflows, interjurisdictional billing information, and emergencysituations: information essential to upgrading overall systemquality and efficiency. Sewer Management Systems offers a practical, comprehensive look atprocuring and implementing state-of-the-art sewer managementsystems and monitoring equipment. It opens with an overview ofsewer maintenance and management and then discusses suchintroductory concepts as understanding flow and how to measure it.It then introduces structures and features of the sewerinfrastructure that are useful in general ways, providingdefinitions applicable in any context. Further chapters cover: * Step-by-step guidance on making system purchase decisions * Data communications, utility services, and sequencing * How to clearly apply data generated to tangible, real-world tasks * Additional functions that may be designed after the system is upand running * Algorithm development for warnings and features for automaticsewer control * How to get a return on investment for an upgraded system--showinghow to use it as a funding source, not just a funding pit * How to upgrade the installed monitoring system The book's appendices provide equipment specifications, recommendedcalibration standards, and sample specifications. Offeringmethodical and detailed guidance to the state of the art of thisimportant engineering specialty, Sewer Management Systems is thecomplete reference to designing systems that effectively monitorthat most basic part of a city's infrastructure--the key to maintai

How to Design Wastewater Systems for Local Conditions in Developing Countries

How to Design Wastewater Systems for Local Conditions in Developing Countries PDF Author: David M. Robbins
Publisher: IWA Publishing
ISBN: 178040476X
Category : Science
Languages : en
Pages : 148

Get Book Here

Book Description
This is a practical handbook providing a step-by-step approach to the techniques used for characterizing wastewater sources and investigating sites where collection, treatment and reuse/disposal technologies will be installed. It is intended to help enable local implementation of on-site and decentralized wastewater management system (DWMS)for wide scale use in development settings. How to Design Wastewater Systems for Local Conditions in Developing Countries helps local service providers and regulatory officials make informed decisions through the use of tools, checklists and case studies. It includes a link to a web based community of on-site and decentralized wastewater professionals, which contains related tools and case studies. This handbook serves as a reference for training classes, certification programs, and higher education programs in civil and sanitary engineering. There is an increasing interest on the part of local government officials and private sector service providers to implement wastewater treatment systems to solve sanitation problems. The model presented in this handbook promotes activities that first generate data related to source and site conditions that represent critical inputs, and then applies this information to the technology selection process. Matching the most appropriate technologies to the specific needs of the wastewater project is the key that leads to long term sustainability. How to Design Wastewater Systems for Local Conditions in Developing Countries is an invaluable resource for public sector decision makers and private sector service providers in developing countries. It is also a useful text for students at engineering colleges in developing countries interested in taking a class that teaches the methods of decentralized wastewater management system (DWMS) development.

Small & Decentralized Wastewater Management Systems

Small & Decentralized Wastewater Management Systems PDF Author: Ronald W. Crites
Publisher: McGraw-Hill Science/Engineering/Math
ISBN:
Category : Nature
Languages : en
Pages : 1112

Get Book Here

Book Description
Decentralized Wastewater Management presents a comprehensive approach to the design of both conventional and innovative systems for the treatment and disposal of wastewater or the reuse of treaded effluent. Smaller treatment plants, which are the concern of most new engineers, are the primary focus of this important book.

Source Separation and Decentralization for Wastewater Management

Source Separation and Decentralization for Wastewater Management PDF Author: Tove A. Larsen
Publisher: IWA Publishing
ISBN: 1843393484
Category : Science
Languages : en
Pages : 502

Get Book Here

Book Description
Is sewer-based wastewater treatment really the optimal technical solution in urban water management? This paradigm is increasingly being questioned. Growing water scarcity and the insight that water will be an important limiting factor for the quality of urban life are main drivers for new approaches in wastewater management. Source Separation and Decentralization for Wastewater Management sets up a comprehensive view of the resources involved in urban water management. It explores the potential of source separation and decentralization to provide viable alternatives to sewer-based urban water management. During the 1990s, several research groups started working on source-separating technologies for wastewater treatment. Source separation was not new, but had only been propagated as a cheap and environmentally friendly technology for the poor. The novelty was the discussion whether source separation could be a sustainable alternative to existing end-of-pipe systems, even in urban areas and industrialized countries. Since then, sustainable resource management and many different source-separating technologies have been investigated. The theoretical framework and also possible technologies have now developed to a more mature state. At the same time, many interesting technologies to process combined or concentrated wastewaters have evolved, which are equally suited for the treatment of source-separated domestic wastewater. The book presents a comprehensive view of the state of the art of source separation and decentralization. It discusses the technical possibilities and practical experience with source separation in different countries around the world. The area is in rapid development, but many of the fundamental insights presented in this book will stay valid. Source Separation and Decentralization for Wastewater Management is intended for all professionals and researchers interested in wastewater management, whether or not they are familiar with source separation. Editors: Tove A. Larsen, Kai M. Udert and Judit Lienert, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Switzerland. Contributors: Yuval Alfiya, Technion - Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Prof. Dr. M. Bruce Beck, University of Georgia, Warnell School of Forestry and Natural Resources; Dr. Christian Binz, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Markus Boller, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Prof. Dr. Eran Friedler, Technion – Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Zenah Bradford-Hartke, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Shelley Brown-Malker, Very Small Particle Company Ltd; Bert Bundervoet, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. David Butler, University of Exeter, Centre for Water Systems; Dr. Christopher A. Buzie, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Dana Cordell, University of Technology, Sydney (UTS), Institute for Sustainable Futures (ISF); Dr. Vasileios Diamantis, Democritus University of Thrace, Department of Environmental Engineering; Prof. Dr. Jan Willem Erisman, Louis Bolk Institute; VU University Amsterdam, Department of Earth Sciences; Barbara Evans, University of Leeds, School of Civil Engineering; Prof. Dr. Malin Falkenmark, Stockholm International Water Institute; Dr. Ted Gardner, Central Queensland University, Institute for Resource Industries and Sustainability; Dr. Heiko Gebauer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Willi Gujer, Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering (BAUG); Prof. Dr. Bruce Jefferson, Cranfield University, Cranfield Water Science Institute; Prof. Dr. Paul Jeffrey, Cranfield University, Cranfield Water Science Institute; Sarina Jenni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Håkan Jönsson, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Ïsik Kabdasli, Ïstanbul Technical University, Civil Engineering Faculty; Prof. Dr. Jörg Keller, The University of Queensland, Advanced Water Management Centre (AWMC); Prof. Dr. Klaus Kömmerer, Leuphana Universität Lüneburg, Institute of Sustainable and Environmental Chemistry; Dr. Katarzyna Kujawa-Roeleveld, Wageningen University, Agrotechnology and Food Sciences Group; Dr. Tove A. Larsen, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Michele Laureni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Gregory Leslie, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Harold Leverenz, University of California at Davis, Department of Civil and Environmental Engineering; Dr. Judit Lienert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Social Sciences (ESS); Prof. Dr. Jürg Londong, Bauhaus-Universität Weimar, Department of Urban Water Management and Sanitation; Dr. Christoph Lüthi, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Water and Sanitation in Developing Countries (Sandec); Prof. Dr. Max Maurer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering; Prof. em. Dr. Gustaf Olsson, Lund University, Department of Measurement Technology and Industrial Electrical Engineering (MIE); Prof. Dr. Ralf Otterpohl, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Bert Palsma, STOWA, Dutch Foundation for Applied Water Research; Dr. Arne R. Panesar, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH; Prof. Dr. Bruce E. Rittmann, Arizona State University, Swette Center for Environmental Biotechnology; Prof. Dr. Hansruedi Siegrist, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Dr. Ashok Sharma, Commonwealth Scientific and Industrial Research Organisation, Australia, Land and Water Division; Prof. Dr. Thor Axel Stenström, Stockholm Environment Institute, Bioresources Group; Norwegian University of Life Sciences, Department of Mathematical Science and Technology; Dr. Eckhard Störmer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Bjartur Swart, STOWA, Dutch Foundation for Applied Water Research; MWH North Europe; Prof. em. Dr. George Tchobanoglous, University of California at Davis, Department of Civil and Environmental Engineering; Elizabeth Tilley, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water and Sanitation in Developing Countries (Sandec); Swiss Federal Institute of Technology Zürich (ETHZ), Centre for Development and Cooperation (NADEL); Prof. Dr. Bernhard Truffer, Eawag, Swiss Federal Institute of Aquatic Science and Technology; Innovation Research in Utility Sectors (Cirus); Prof. Dr. Olcay Tünay, Ïstanbul Technical University, Civil Engineering Faculty; Dr. Kai M. Udert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. em. Dr. Willy Verstraete, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. Björn Vinnerås, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Urs von Gunten, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T); Ecole Polytechnique Fédérale de Lausanne (EPFL),School of Architecture, Civil and Environmental Engineering (ENAC); Prof. em. Dr. Peter A. Wilderer, Technische Universität München, Institute for Advanced Study; Prof. Dr. Jun Xia, Chinese Academy of Sciences (CAS), Center for Water Resources Research and Key Laboratory of Water Cycle and Related Surface Processes; Prof. Dr. Grietje Zeeman, Wageningen University, Agrotechnology and Food Sciences Group

Faecal Sludge Management

Faecal Sludge Management PDF Author: Linda Strande
Publisher: IWA Publishing
ISBN: 1780404735
Category : Technology & Engineering
Languages : en
Pages : 428

Get Book Here

Book Description
It is estimated that literally billions of residents in urban and peri-urban areas of Africa, Asia, and Latin America are served by onsite sanitation systems (e.g. various types of latrines and septic tanks). Until recently, the management of faecal sludge from these onsite systems has been grossly neglected, partially as a result of them being considered temporary solutions until sewer-based systems could be implemented. However, the perception of onsite or decentralized sanitation technologies for urban areas is gradually changing, and is increasingly being considered as long-term, sustainable options in urban areas, especially in low- and middle-income countries that lack sewer infrastructures. This is the first book dedicated to faecal sludge management. It compiles the current state of knowledge of the rapidly evolving field of faecal sludge management, and presents an integrated approach that includes technology, management, and planning based on Sandecs 20 years of experience in the field. Faecal Sludge Management: Systems Approach for Implementation and Operation addresses the organization of the entire faecal sludge management service chain, from the collection and transport of sludge, and the current state of knowledge of treatment options, to the final end use or disposal of treated sludge. The book also presents important factors to consider when evaluating and upscaling new treatment technology options. The book is designed for undergraduate and graduate students, and engineers and practitioners in the field who have some basic knowledge of environmental and/or wastewater engineering.

Water Conservation, Reuse, and Recycling

Water Conservation, Reuse, and Recycling PDF Author: Academy of Sciences of the Islamic Republic of Iran
Publisher: National Academies Press
ISBN: 0309181194
Category : Science
Languages : en
Pages : 292

Get Book Here

Book Description
In December 2002, a group of specialists on water resources from the United States and Iran met in Tunis, Tunisia, for an interacademy workshop on water resources management, conservation, and recycling. This was the fourth interacademy workshop on a variety of topics held in 2002, the first year of such workshops. Tunis was selected as the location for the workshop because the Tunisian experience in addressing water conservation issues was of interest to the participants from both the United States and Iran. This report includes the agenda for the workshop, all of the papers that were presented, and the list of site visits.

Alternative Sewer Systems FD-12, 2e

Alternative Sewer Systems FD-12, 2e PDF Author: Water Environment Federation
Publisher: McGraw Hill Professional
ISBN: 0071591230
Category : Technology & Engineering
Languages : en
Pages : 336

Get Book Here

Book Description
Market: Engineering consultants; municipal waste managers; purchasing department managers; government regulators; members of the WEF, USEPA, U.S. Department of Agriculture, American Water Works Association, and International Water Association Includes both SI units and US customary units

Privatization of Water Services in the United States

Privatization of Water Services in the United States PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309170761
Category : Science
Languages : en
Pages : 158

Get Book Here

Book Description
In the quest to reduce costs and improve the efficiency of water and wastewater services, many communities in the United States are exploring the potential advantages of privatization of those services. Unlike other utility services, local governments have generally assumed responsibility for providing water services. Privatization of such services can include the outright sale of system assets, or various forms of public-private partnershipsâ€"from the simple provision of supplies and services, to private design construction and operation of treatment plants and distribution systems. Many factors are contributing to the growing interest in the privatization of water services. Higher operating costs, more stringent federal water quality and waste effluent standards, greater customer demands for quality and reliability, and an aging water delivery and wastewater collection and treatment infrastructure are all challenging municipalities that may be short of funds or technical capabilities. For municipalities with limited capacities to meet these challenges, privatization can be a viable alternative. Privatization of Water Services evaluates the fiscal and policy implications of privatization, scenarios in which privatization works best, and the efficiencies that may be gained by contracting with private water utilities.

Assessing Infiltration and Exfiltration on the Performance of Urban Sewer Systems

Assessing Infiltration and Exfiltration on the Performance of Urban Sewer Systems PDF Author: Bryan Ellis
Publisher: IWA Publishing
ISBN: 184339149X
Category : Science
Languages : en
Pages : 193

Get Book Here

Book Description
Sewer systems constitute a very significant heritage in European cities. Their structural quality and functional efficiency are key parameters to guarantee the transfer of domestic and industrial wastewater to treatment plants without infiltration nor exfiltration. Infiltration of groundwater is particularly detrimental to treatment plant efficiency, while exfiltration of wastewater can lead to groundwater contamination. The European research project APUSS (Assessing infiltration and exfiltration on the Performance of Urban Sewer Systems) was devoted to sewer infiltration and exfiltration questions. It was structured in three main Work Areas dealing respectively with i) the development of new measurement methods based on tracer experiments and accounting for detailed uncertainty analyses, ii) the implementation of models and software tools to integrate structural and experimental data and to facilitate data display, operational management and decision-making processes and iii) the integration of economic and operational questions by means of cost estimation, economic evaluation, performance indicators and multi-criteria methods applied to investment/rehabilitation strategies. This final report describes the objectives, methods and main results for each Work Area. References to detailed methods, protocols, reports and tools are given in this final report which will be an invaluable source of information for all those concerned with the performance of urban sewer systems.