Convex and Set-Valued Analysis

Convex and Set-Valued Analysis PDF Author: Aram V. Arutyunov
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110460416
Category : Mathematics
Languages : en
Pages : 244

Get Book Here

Book Description
This textbook is devoted to a compressed and self-contained exposition of two important parts of contemporary mathematics: convex and set-valued analysis. In the first part, properties of convex sets, the theory of separation, convex functions and their differentiability, properties of convex cones in finite- and infinite-dimensional spaces are discussed. The second part covers some important parts of set-valued analysis. There the properties of the Hausdorff metric and various continuity concepts of set-valued maps are considered. The great attention is paid also to measurable set-valued functions, continuous, Lipschitz and some special types of selections, fixed point and coincidence theorems, covering set-valued maps, topological degree theory and differential inclusions. Contents: Preface Part I: Convex analysis Convex sets and their properties The convex hull of a set. The interior of convex sets The affine hull of sets. The relative interior of convex sets Separation theorems for convex sets Convex functions Closedness, boundedness, continuity, and Lipschitz property of convex functions Conjugate functions Support functions Differentiability of convex functions and the subdifferential Convex cones A little more about convex cones in infinite-dimensional spaces A problem of linear programming More about convex sets and convex hulls Part II: Set-valued analysis Introduction to the theory of topological and metric spaces The Hausdorff metric and the distance between sets Some fine properties of the Hausdorff metric Set-valued maps. Upper semicontinuous and lower semicontinuous set-valued maps A base of topology of the spaceHc(X) Measurable set-valued maps. Measurable selections and measurable choice theorems The superposition set-valued operator The Michael theorem and continuous selections. Lipschitz selections. Single-valued approximations Special selections of set-valued maps Differential inclusions Fixed points and coincidences of maps in metric spaces Stability of coincidence points and properties of covering maps Topological degree and fixed points of set-valued maps in Banach spaces Existence results for differential inclusions via the fixed point method Notation Bibliography Index

Convex and Set-Valued Analysis

Convex and Set-Valued Analysis PDF Author: Aram V. Arutyunov
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110460416
Category : Mathematics
Languages : en
Pages : 244

Get Book Here

Book Description
This textbook is devoted to a compressed and self-contained exposition of two important parts of contemporary mathematics: convex and set-valued analysis. In the first part, properties of convex sets, the theory of separation, convex functions and their differentiability, properties of convex cones in finite- and infinite-dimensional spaces are discussed. The second part covers some important parts of set-valued analysis. There the properties of the Hausdorff metric and various continuity concepts of set-valued maps are considered. The great attention is paid also to measurable set-valued functions, continuous, Lipschitz and some special types of selections, fixed point and coincidence theorems, covering set-valued maps, topological degree theory and differential inclusions. Contents: Preface Part I: Convex analysis Convex sets and their properties The convex hull of a set. The interior of convex sets The affine hull of sets. The relative interior of convex sets Separation theorems for convex sets Convex functions Closedness, boundedness, continuity, and Lipschitz property of convex functions Conjugate functions Support functions Differentiability of convex functions and the subdifferential Convex cones A little more about convex cones in infinite-dimensional spaces A problem of linear programming More about convex sets and convex hulls Part II: Set-valued analysis Introduction to the theory of topological and metric spaces The Hausdorff metric and the distance between sets Some fine properties of the Hausdorff metric Set-valued maps. Upper semicontinuous and lower semicontinuous set-valued maps A base of topology of the spaceHc(X) Measurable set-valued maps. Measurable selections and measurable choice theorems The superposition set-valued operator The Michael theorem and continuous selections. Lipschitz selections. Single-valued approximations Special selections of set-valued maps Differential inclusions Fixed points and coincidences of maps in metric spaces Stability of coincidence points and properties of covering maps Topological degree and fixed points of set-valued maps in Banach spaces Existence results for differential inclusions via the fixed point method Notation Bibliography Index

Set-Valued Analysis

Set-Valued Analysis PDF Author: Jean-Pierre Aubin
Publisher: Springer Science & Business Media
ISBN: 0817648488
Category : Science
Languages : en
Pages : 474

Get Book Here

Book Description
"An elegantly written, introductory overview of the field, with a near perfect choice of what to include and what not, enlivened in places by historical tidbits and made eminently readable throughout by crisp language. It has succeeded in doing the near-impossible—it has made a subject which is generally inhospitable to nonspecialists because of its ‘family jargon’ appear nonintimidating even to a beginning graduate student." —The Journal of the Indian Institute of Science "The book under review gives a comprehensive treatment of basically everything in mathematics that can be named multivalued/set-valued analysis. ...The book is highly recommended for mathematicians and graduate students who will find here a very comprehensive treatment of set-valued analysis." —Mathematical Reviews "This book provides a thorough introduction to multivalued or set-valued analysis... The style is lively and vigorous, the relevant historical comments and suggestive overviews increase the interest for this work...Graduate students and mathematicians of every persuasion will welcome this unparalleled guide to set-valued analysis." —Zentralblatt Math

Convex and Set-Valued Analysis

Convex and Set-Valued Analysis PDF Author: Aram V. Arutyunov
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110460300
Category : Mathematics
Languages : en
Pages : 209

Get Book Here

Book Description
This textbook is devoted to a compressed and self-contained exposition of two important parts of contemporary mathematics: convex and set-valued analysis. In the first part, properties of convex sets, the theory of separation, convex functions and their differentiability, properties of convex cones in finite- and infinite-dimensional spaces are discussed. The second part covers some important parts of set-valued analysis. There the properties of the Hausdorff metric and various continuity concepts of set-valued maps are considered. The great attention is paid also to measurable set-valued functions, continuous, Lipschitz and some special types of selections, fixed point and coincidence theorems, covering set-valued maps, topological degree theory and differential inclusions. Contents: Preface Part I: Convex analysis Convex sets and their properties The convex hull of a set. The interior of convex sets The affine hull of sets. The relative interior of convex sets Separation theorems for convex sets Convex functions Closedness, boundedness, continuity, and Lipschitz property of convex functions Conjugate functions Support functions Differentiability of convex functions and the subdifferential Convex cones A little more about convex cones in infinite-dimensional spaces A problem of linear programming More about convex sets and convex hulls Part II: Set-valued analysis Introduction to the theory of topological and metric spaces The Hausdorff metric and the distance between sets Some fine properties of the Hausdorff metric Set-valued maps. Upper semicontinuous and lower semicontinuous set-valued maps A base of topology of the spaceHc(X) Measurable set-valued maps. Measurable selections and measurable choice theorems The superposition set-valued operator The Michael theorem and continuous selections. Lipschitz selections. Single-valued approximations Special selections of set-valued maps Differential inclusions Fixed points and coincidences of maps in metric spaces Stability of coincidence points and properties of covering maps Topological degree and fixed points of set-valued maps in Banach spaces Existence results for differential inclusions via the fixed point method Notation Bibliography Index

Set-Valued, Convex, and Nonsmooth Analysis in Dynamics and Control

Set-Valued, Convex, and Nonsmooth Analysis in Dynamics and Control PDF Author: Rafal K. Goebel
Publisher: SIAM
ISBN: 1611977983
Category : Mathematics
Languages : en
Pages : 234

Get Book Here

Book Description
Set-valued analysis, convex analysis, and nonsmooth analysis are relatively modern branches of mathematical analysis that have become increasingly relevant in current control theory and control engineering literature. This book serves as a broad introduction to analytical tools in these fields and to their applications in dynamical and control systems and is the first to cover these topics with this scope and at this level. Both continuous-time and discrete-time mutlivalued dynamics, modeled by differential and difference inclusions, are considered. Set-Valued, Convex, and Nonsmooth Analysis in Dynamics and Control: An Introduction is aimed at graduate students in control engineering and applied mathematics and researchers in control engineering who have no prior exposure to set-valued, convex, and nonsmooth analysis. The book will also be of interest to advanced undergraduate mathematics students and mathematicians with no prior exposure to the topic. The expected mathematical background is a course on nonlinear differential equations / dynamical systems and a course on real analysis. Knowledge of some control theory is helpful, but not essential.

Set-valued Optimization

Set-valued Optimization PDF Author: Akhtar A. Khan
Publisher: Springer
ISBN: 3642542654
Category : Mathematics
Languages : en
Pages : 781

Get Book Here

Book Description
Set-valued optimization is a vibrant and expanding branch of mathematics that deals with optimization problems where the objective map and/or the constraints maps are set-valued maps acting between certain spaces. Since set-valued maps subsumes single valued maps, set-valued optimization provides an important extension and unification of the scalar as well as the vector optimization problems. Therefore this relatively new discipline has justifiably attracted a great deal of attention in recent years. This book presents, in a unified framework, basic properties on ordering relations, solution concepts for set-valued optimization problems, a detailed description of convex set-valued maps, most recent developments in separation theorems, scalarization techniques, variational principles, tangent cones of first and higher order, sub-differential of set-valued maps, generalized derivatives of set-valued maps, sensitivity analysis, optimality conditions, duality and applications in economics among other things.

An Easy Path to Convex Analysis and Applications

An Easy Path to Convex Analysis and Applications PDF Author: Boris S. Mordukhovich
Publisher: Morgan & Claypool Publishers
ISBN: 1627052380
Category : Mathematics
Languages : en
Pages : 219

Get Book Here

Book Description
Convex optimization has an increasing impact on many areas of mathematics, applied sciences, and practical applications. It is now being taught at many universities and being used by researchers of different fields. As convex analysis is the mathematical f

Topologies on Closed and Closed Convex Sets

Topologies on Closed and Closed Convex Sets PDF Author: Gerald Beer
Publisher: Springer Science & Business Media
ISBN: 9780792325314
Category : Mathematics
Languages : en
Pages : 360

Get Book Here

Book Description
This monograph provides an introduction to the theory of topologies defined on the closed subsets of a metric space, and on the closed convex subsets of a normed linear space as well. A unifying theme is the relationship between topology and set convergence on the one hand, and set functionals on the other. The text includes for the first time anywhere an exposition of three topologies that over the past ten years have become fundamental tools in optimization, one-sided analysis, convex analysis, and the theory of multifunctions: the Wijsman topology, the Attouch--Wets topology, and the slice topology. Particular attention is given to topologies on lower semicontinuous functions, especially lower semicontinuous convex functions, as associated with their epigraphs. The interplay between convex duality and topology is carefully considered and a chapter on set-valued functions is included. The book contains over 350 exercises and is suitable as a graduate text. This book is of interest to those working in general topology, set-valued analysis, geometric functional analysis, optimization, convex analysis and mathematical economics.

Discrete Convex Analysis

Discrete Convex Analysis PDF Author: Kazuo Murota
Publisher: SIAM
ISBN: 9780898718508
Category : Mathematics
Languages : en
Pages : 411

Get Book Here

Book Description
Discrete Convex Analysis is a novel paradigm for discrete optimization that combines the ideas in continuous optimization (convex analysis) and combinatorial optimization (matroid/submodular function theory) to establish a unified theoretical framework for nonlinear discrete optimization. The study of this theory is expanding with the development of efficient algorithms and applications to a number of diverse disciplines like matrix theory, operations research, and economics. This self-contained book is designed to provide a novel insight into optimization on discrete structures and should reveal unexpected links among different disciplines. It is the first and only English-language monograph on the theory and applications of discrete convex analysis.

Convex Functional Analysis

Convex Functional Analysis PDF Author: Andrew J. Kurdila
Publisher: Springer Science & Business Media
ISBN: 3764373571
Category : Science
Languages : en
Pages : 238

Get Book Here

Book Description
This volume is dedicated to the fundamentals of convex functional analysis. It presents those aspects of functional analysis that are extensively used in various applications to mechanics and control theory. The purpose of the text is essentially two-fold. On the one hand, a bare minimum of the theory required to understand the principles of functional, convex and set-valued analysis is presented. Numerous examples and diagrams provide as intuitive an explanation of the principles as possible. On the other hand, the volume is largely self-contained. Those with a background in graduate mathematics will find a concise summary of all main definitions and theorems.

Variational Analysis

Variational Analysis PDF Author: R. Tyrrell Rockafellar
Publisher: Springer Science & Business Media
ISBN: 3642024319
Category : Mathematics
Languages : en
Pages : 747

Get Book Here

Book Description
From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.