Author: Charles C Pinter
Publisher: Courier Corporation
ISBN: 0486497089
Category : Mathematics
Languages : en
Pages : 259
Book Description
"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--
A Book of Set Theory
Author: Charles C Pinter
Publisher: Courier Corporation
ISBN: 0486497089
Category : Mathematics
Languages : en
Pages : 259
Book Description
"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--
Publisher: Courier Corporation
ISBN: 0486497089
Category : Mathematics
Languages : en
Pages : 259
Book Description
"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--
Elements of Set Theory
Author: Herbert B. Enderton
Publisher: Academic Press
ISBN: 0080570429
Category : Mathematics
Languages : en
Pages : 294
Book Description
This is an introductory undergraduate textbook in set theory. In mathematics these days, essentially everything is a set. Some knowledge of set theory is necessary part of the background everyone needs for further study of mathematics. It is also possible to study set theory for its own interest--it is a subject with intruiging results anout simple objects. This book starts with material that nobody can do without. There is no end to what can be learned of set theory, but here is a beginning.
Publisher: Academic Press
ISBN: 0080570429
Category : Mathematics
Languages : en
Pages : 294
Book Description
This is an introductory undergraduate textbook in set theory. In mathematics these days, essentially everything is a set. Some knowledge of set theory is necessary part of the background everyone needs for further study of mathematics. It is also possible to study set theory for its own interest--it is a subject with intruiging results anout simple objects. This book starts with material that nobody can do without. There is no end to what can be learned of set theory, but here is a beginning.
Set Theory
Author: Abhijit Dasgupta
Publisher: Springer Science & Business Media
ISBN: 1461488540
Category : Mathematics
Languages : en
Pages : 434
Book Description
What is a number? What is infinity? What is continuity? What is order? Answers to these fundamental questions obtained by late nineteenth-century mathematicians such as Dedekind and Cantor gave birth to set theory. This textbook presents classical set theory in an intuitive but concrete manner. To allow flexibility of topic selection in courses, the book is organized into four relatively independent parts with distinct mathematical flavors. Part I begins with the Dedekind–Peano axioms and ends with the construction of the real numbers. The core Cantor–Dedekind theory of cardinals, orders, and ordinals appears in Part II. Part III focuses on the real continuum. Finally, foundational issues and formal axioms are introduced in Part IV. Each part ends with a postscript chapter discussing topics beyond the scope of the main text, ranging from philosophical remarks to glimpses into landmark results of modern set theory such as the resolution of Lusin's problems on projective sets using determinacy of infinite games and large cardinals. Separating the metamathematical issues into an optional fourth part at the end makes this textbook suitable for students interested in any field of mathematics, not just for those planning to specialize in logic or foundations. There is enough material in the text for a year-long course at the upper-undergraduate level. For shorter one-semester or one-quarter courses, a variety of arrangements of topics are possible. The book will be a useful resource for both experts working in a relevant or adjacent area and beginners wanting to learn set theory via self-study.
Publisher: Springer Science & Business Media
ISBN: 1461488540
Category : Mathematics
Languages : en
Pages : 434
Book Description
What is a number? What is infinity? What is continuity? What is order? Answers to these fundamental questions obtained by late nineteenth-century mathematicians such as Dedekind and Cantor gave birth to set theory. This textbook presents classical set theory in an intuitive but concrete manner. To allow flexibility of topic selection in courses, the book is organized into four relatively independent parts with distinct mathematical flavors. Part I begins with the Dedekind–Peano axioms and ends with the construction of the real numbers. The core Cantor–Dedekind theory of cardinals, orders, and ordinals appears in Part II. Part III focuses on the real continuum. Finally, foundational issues and formal axioms are introduced in Part IV. Each part ends with a postscript chapter discussing topics beyond the scope of the main text, ranging from philosophical remarks to glimpses into landmark results of modern set theory such as the resolution of Lusin's problems on projective sets using determinacy of infinite games and large cardinals. Separating the metamathematical issues into an optional fourth part at the end makes this textbook suitable for students interested in any field of mathematics, not just for those planning to specialize in logic or foundations. There is enough material in the text for a year-long course at the upper-undergraduate level. For shorter one-semester or one-quarter courses, a variety of arrangements of topics are possible. The book will be a useful resource for both experts working in a relevant or adjacent area and beginners wanting to learn set theory via self-study.
Notes on Set Theory
Author: Yiannis Moschovakis
Publisher: Springer Science & Business Media
ISBN: 1475741537
Category : Mathematics
Languages : en
Pages : 280
Book Description
What this book is about. The theory of sets is a vibrant, exciting math ematical theory, with its own basic notions, fundamental results and deep open problems, and with significant applications to other mathematical theories. At the same time, axiomatic set theory is often viewed as a foun dation ofmathematics: it is alleged that all mathematical objects are sets, and their properties can be derived from the relatively few and elegant axioms about sets. Nothing so simple-minded can be quite true, but there is little doubt that in standard, current mathematical practice, "making a notion precise" is essentially synonymous with "defining it in set theory. " Set theory is the official language of mathematics, just as mathematics is the official language of science. Like most authors of elementary, introductory books about sets, I have tried to do justice to both aspects of the subject. From straight set theory, these Notes cover the basic facts about "ab stract sets," including the Axiom of Choice, transfinite recursion, and car dinal and ordinal numbers. Somewhat less common is the inclusion of a chapter on "pointsets" which focuses on results of interest to analysts and introduces the reader to the Continuum Problem, central to set theory from the very beginning.
Publisher: Springer Science & Business Media
ISBN: 1475741537
Category : Mathematics
Languages : en
Pages : 280
Book Description
What this book is about. The theory of sets is a vibrant, exciting math ematical theory, with its own basic notions, fundamental results and deep open problems, and with significant applications to other mathematical theories. At the same time, axiomatic set theory is often viewed as a foun dation ofmathematics: it is alleged that all mathematical objects are sets, and their properties can be derived from the relatively few and elegant axioms about sets. Nothing so simple-minded can be quite true, but there is little doubt that in standard, current mathematical practice, "making a notion precise" is essentially synonymous with "defining it in set theory. " Set theory is the official language of mathematics, just as mathematics is the official language of science. Like most authors of elementary, introductory books about sets, I have tried to do justice to both aspects of the subject. From straight set theory, these Notes cover the basic facts about "ab stract sets," including the Axiom of Choice, transfinite recursion, and car dinal and ordinal numbers. Somewhat less common is the inclusion of a chapter on "pointsets" which focuses on results of interest to analysts and introduces the reader to the Continuum Problem, central to set theory from the very beginning.
Introduction to Set Theory
Author: Karel Hrbacek
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 272
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 272
Book Description
Set Theory and Its Philosophy
Author: Michael D. Potter
Publisher: Clarendon Press
ISBN: 9780199269730
Category : Mathematics
Languages : en
Pages : 345
Book Description
A wonderful new book ... Potter has written the best philosophical introduction to set theory on the market - Timothy Bays, Notre Dame Philosophical Reviews.
Publisher: Clarendon Press
ISBN: 9780199269730
Category : Mathematics
Languages : en
Pages : 345
Book Description
A wonderful new book ... Potter has written the best philosophical introduction to set theory on the market - Timothy Bays, Notre Dame Philosophical Reviews.
Basic Set Theory
Author: Nikolai Konstantinovich Vereshchagin
Publisher: American Mathematical Soc.
ISBN: 0821827316
Category : Mathematics
Languages : en
Pages : 130
Book Description
The main notions of set theory (cardinals, ordinals, transfinite induction) are fundamental to all mathematicians, not only to those who specialize in mathematical logic or set-theoretic topology. Basic set theory is generally given a brief overview in courses on analysis, algebra, or topology, even though it is sufficiently important, interesting, and simple to merit its own leisurely treatment. This book provides just that: a leisurely exposition for a diversified audience. It is suitable for a broad range of readers, from undergraduate students to professional mathematicians who want to finally find out what transfinite induction is and why it is always replaced by Zorn's Lemma. The text introduces all main subjects of ``naive'' (nonaxiomatic) set theory: functions, cardinalities, ordered and well-ordered sets, transfinite induction and its applications, ordinals, and operations on ordinals. Included are discussions and proofs of the Cantor-Bernstein Theorem, Cantor's diagonal method, Zorn's Lemma, Zermelo's Theorem, and Hamel bases. With over 150 problems, the book is a complete and accessible introduction to the subject.
Publisher: American Mathematical Soc.
ISBN: 0821827316
Category : Mathematics
Languages : en
Pages : 130
Book Description
The main notions of set theory (cardinals, ordinals, transfinite induction) are fundamental to all mathematicians, not only to those who specialize in mathematical logic or set-theoretic topology. Basic set theory is generally given a brief overview in courses on analysis, algebra, or topology, even though it is sufficiently important, interesting, and simple to merit its own leisurely treatment. This book provides just that: a leisurely exposition for a diversified audience. It is suitable for a broad range of readers, from undergraduate students to professional mathematicians who want to finally find out what transfinite induction is and why it is always replaced by Zorn's Lemma. The text introduces all main subjects of ``naive'' (nonaxiomatic) set theory: functions, cardinalities, ordered and well-ordered sets, transfinite induction and its applications, ordinals, and operations on ordinals. Included are discussions and proofs of the Cantor-Bernstein Theorem, Cantor's diagonal method, Zorn's Lemma, Zermelo's Theorem, and Hamel bases. With over 150 problems, the book is a complete and accessible introduction to the subject.
Set Theory for the Working Mathematician
Author: Krzysztof Ciesielski
Publisher: Cambridge University Press
ISBN: 9780521594653
Category : Mathematics
Languages : en
Pages : 256
Book Description
Presents those methods of modern set theory most applicable to other areas of pure mathematics.
Publisher: Cambridge University Press
ISBN: 9780521594653
Category : Mathematics
Languages : en
Pages : 256
Book Description
Presents those methods of modern set theory most applicable to other areas of pure mathematics.
Classic Set Theory
Author: D.C. Goldrei
Publisher: Routledge
ISBN: 1351460609
Category : Mathematics
Languages : en
Pages : 300
Book Description
Designed for undergraduate students of set theory, Classic Set Theory presents a modern perspective of the classic work of Georg Cantor and Richard Dedekin and their immediate successors. This includes:The definition of the real numbers in terms of rational numbers and ultimately in terms of natural numbersDefining natural numbers in terms of setsThe potential paradoxes in set theoryThe Zermelo-Fraenkel axioms for set theoryThe axiom of choiceThe arithmetic of ordered setsCantor's two sorts of transfinite number - cardinals and ordinals - and the arithmetic of these.The book is designed for students studying on their own, without access to lecturers and other reading, along the lines of the internationally renowned courses produced by the Open University. There are thus a large number of exercises within the main body of the text designed to help students engage with the subject, many of which have full teaching solutions. In addition, there are a number of exercises without answers so students studying under the guidance of a tutor may be assessed.Classic Set Theory gives students sufficient grounding in a rigorous approach to the revolutionary results of set theory as well as pleasure in being able to tackle significant problems that arise from the theory.
Publisher: Routledge
ISBN: 1351460609
Category : Mathematics
Languages : en
Pages : 300
Book Description
Designed for undergraduate students of set theory, Classic Set Theory presents a modern perspective of the classic work of Georg Cantor and Richard Dedekin and their immediate successors. This includes:The definition of the real numbers in terms of rational numbers and ultimately in terms of natural numbersDefining natural numbers in terms of setsThe potential paradoxes in set theoryThe Zermelo-Fraenkel axioms for set theoryThe axiom of choiceThe arithmetic of ordered setsCantor's two sorts of transfinite number - cardinals and ordinals - and the arithmetic of these.The book is designed for students studying on their own, without access to lecturers and other reading, along the lines of the internationally renowned courses produced by the Open University. There are thus a large number of exercises within the main body of the text designed to help students engage with the subject, many of which have full teaching solutions. In addition, there are a number of exercises without answers so students studying under the guidance of a tutor may be assessed.Classic Set Theory gives students sufficient grounding in a rigorous approach to the revolutionary results of set theory as well as pleasure in being able to tackle significant problems that arise from the theory.
Set Theory
Author: Felix Hausdorff
Publisher: American Mathematical Soc.
ISBN: 1470464942
Category : Education
Languages : en
Pages : 354
Book Description
This work is a translation into English of the Third Edition of the classic German language work Mengenlehre by Felix Hausdorff published in 1937. From the Preface (1937): “The present book has as its purpose an exposition of the most important theorems of the theory of sets, along with complete proofs, so that the reader should not find it necessary to go outside this book for supplementary details while, on the other hand, the book should enable him to undertake a more detailed study of the voluminous literature on the subject. The book does not presuppose any mathematical knowledge beyond the differential and integral calculus, but it does require a certain maturity in abstract reasoning; qualified college seniors and first year graduate students should have no difficulty in making the material their own … The mathematician will … find in this book some things that will be new to him, at least as regards formal presentation and, in particular, as regards the strengthening of theorems, the simplification of proofs, and the removal of unnecessary hypotheses.”
Publisher: American Mathematical Soc.
ISBN: 1470464942
Category : Education
Languages : en
Pages : 354
Book Description
This work is a translation into English of the Third Edition of the classic German language work Mengenlehre by Felix Hausdorff published in 1937. From the Preface (1937): “The present book has as its purpose an exposition of the most important theorems of the theory of sets, along with complete proofs, so that the reader should not find it necessary to go outside this book for supplementary details while, on the other hand, the book should enable him to undertake a more detailed study of the voluminous literature on the subject. The book does not presuppose any mathematical knowledge beyond the differential and integral calculus, but it does require a certain maturity in abstract reasoning; qualified college seniors and first year graduate students should have no difficulty in making the material their own … The mathematician will … find in this book some things that will be new to him, at least as regards formal presentation and, in particular, as regards the strengthening of theorems, the simplification of proofs, and the removal of unnecessary hypotheses.”