Sensitivity Analysis in Practice

Sensitivity Analysis in Practice PDF Author: Andrea Saltelli
Publisher: John Wiley & Sons
ISBN: 047087094X
Category : Mathematics
Languages : en
Pages : 232

Get Book Here

Book Description
Sensitivity analysis should be considered a pre-requisite for statistical model building in any scientific discipline where modelling takes place. For a non-expert, choosing the method of analysis for their model is complex, and depends on a number of factors. This book guides the non-expert through their problem in order to enable them to choose and apply the most appropriate method. It offers a review of the state-of-the-art in sensitivity analysis, and is suitable for a wide range of practitioners. It is focussed on the use of SIMLAB – a widely distributed freely-available sensitivity analysis software package developed by the authors – for solving problems in sensitivity analysis of statistical models. Other key features: Provides an accessible overview of the current most widely used methods for sensitivity analysis. Opens with a detailed worked example to explain the motivation behind the book. Includes a range of examples to help illustrate the concepts discussed. Focuses on implementation of the methods in the software SIMLAB - a freely-available sensitivity analysis software package developed by the authors. Contains a large number of references to sources for further reading. Authored by the leading authorities on sensitivity analysis.

Sensitivity Analysis in Practice

Sensitivity Analysis in Practice PDF Author: Andrea Saltelli
Publisher: John Wiley & Sons
ISBN: 047087094X
Category : Mathematics
Languages : en
Pages : 232

Get Book Here

Book Description
Sensitivity analysis should be considered a pre-requisite for statistical model building in any scientific discipline where modelling takes place. For a non-expert, choosing the method of analysis for their model is complex, and depends on a number of factors. This book guides the non-expert through their problem in order to enable them to choose and apply the most appropriate method. It offers a review of the state-of-the-art in sensitivity analysis, and is suitable for a wide range of practitioners. It is focussed on the use of SIMLAB – a widely distributed freely-available sensitivity analysis software package developed by the authors – for solving problems in sensitivity analysis of statistical models. Other key features: Provides an accessible overview of the current most widely used methods for sensitivity analysis. Opens with a detailed worked example to explain the motivation behind the book. Includes a range of examples to help illustrate the concepts discussed. Focuses on implementation of the methods in the software SIMLAB - a freely-available sensitivity analysis software package developed by the authors. Contains a large number of references to sources for further reading. Authored by the leading authorities on sensitivity analysis.

Global Sensitivity Analysis

Global Sensitivity Analysis PDF Author: Andrea Saltelli
Publisher: John Wiley & Sons
ISBN: 9780470725177
Category : Mathematics
Languages : en
Pages : 304

Get Book Here

Book Description
Complex mathematical and computational models are used in all areas of society and technology and yet model based science is increasingly contested or refuted, especially when models are applied to controversial themes in domains such as health, the environment or the economy. More stringent standards of proofs are demanded from model-based numbers, especially when these numbers represent potential financial losses, threats to human health or the state of the environment. Quantitative sensitivity analysis is generally agreed to be one such standard. Mathematical models are good at mapping assumptions into inferences. A modeller makes assumptions about laws pertaining to the system, about its status and a plethora of other, often arcane, system variables and internal model settings. To what extent can we rely on the model-based inference when most of these assumptions are fraught with uncertainties? Global Sensitivity Analysis offers an accessible treatment of such problems via quantitative sensitivity analysis, beginning with the first principles and guiding the reader through the full range of recommended practices with a rich set of solved exercises. The text explains the motivation for sensitivity analysis, reviews the required statistical concepts, and provides a guide to potential applications. The book: Provides a self-contained treatment of the subject, allowing readers to learn and practice global sensitivity analysis without further materials. Presents ways to frame the analysis, interpret its results, and avoid potential pitfalls. Features numerous exercises and solved problems to help illustrate the applications. Is authored by leading sensitivity analysis practitioners, combining a range of disciplinary backgrounds. Postgraduate students and practitioners in a wide range of subjects, including statistics, mathematics, engineering, physics, chemistry, environmental sciences, biology, toxicology, actuarial sciences, and econometrics will find much of use here. This book will prove equally valuable to engineers working on risk analysis and to financial analysts concerned with pricing and hedging.

Sensitivity Analysis

Sensitivity Analysis PDF Author: Andrea Saltelli
Publisher: Wiley
ISBN: 9780470743829
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
The Wiley Paperback Series makes valuable content more accessible to a new generation of statisticians, mathematicians and scientists. Sensitivity analysis is used to ascertain how a given model output depends upon the input parameters. This is an important method for checking the quality of a given model, as well as a powerful tool for checking the robustness and reliability of its analysis. The topic is acknowledged as essential for good modelling practice and is an implicit part of any modelling field. Offers an accessible introduction to sensitivity analysis. Covers all the latest research. Illustrates concepts with numerous examples, applications and case studies. Includes contributions from the leading researchers active in developing strategies for sensitivity analysis. The principles of sensitivity analysis are carefully described and suitable methods for approaching many types of problems are given. The book introduces the modeller to the entire casual assessment chain, from data to predictions, whilst explaining the impact of source uncertainties and framing assumptions. A ‘hitch-hikers guide’ is included to allow the more experienced reader to readily access specific applications. Modellers from a wide range of disciplines, including biostatistics, economics, environmental impact assessment, chemistry and engineering will benefit greatly from the numerous examples and applications. "Presents many different sensitivity analysis methodologies and demonstrates their usefulness in scientific research." (Zentralblatt MATH)

The Prevention and Treatment of Missing Data in Clinical Trials

The Prevention and Treatment of Missing Data in Clinical Trials PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 030918651X
Category : Medical
Languages : en
Pages : 163

Get Book Here

Book Description
Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participants discontinue study treatment. Existing guidelines for the design and conduct of clinical trials, and the analysis of the resulting data, provide only limited advice on how to handle missing data. Thus, approaches to the analysis of data with an appreciable amount of missing values tend to be ad hoc and variable. The Prevention and Treatment of Missing Data in Clinical Trials concludes that a more principled approach to design and analysis in the presence of missing data is both needed and possible. Such an approach needs to focus on two critical elements: (1) careful design and conduct to limit the amount and impact of missing data and (2) analysis that makes full use of information on all randomized participants and is based on careful attention to the assumptions about the nature of the missing data underlying estimates of treatment effects. In addition to the highest priority recommendations, the book offers more detailed recommendations on the conduct of clinical trials and techniques for analysis of trial data.

Developing a Protocol for Observational Comparative Effectiveness Research: A User's Guide

Developing a Protocol for Observational Comparative Effectiveness Research: A User's Guide PDF Author: Agency for Health Care Research and Quality (U.S.)
Publisher: Government Printing Office
ISBN: 1587634236
Category : Medical
Languages : en
Pages : 236

Get Book Here

Book Description
This User’s Guide is a resource for investigators and stakeholders who develop and review observational comparative effectiveness research protocols. It explains how to (1) identify key considerations and best practices for research design; (2) build a protocol based on these standards and best practices; and (3) judge the adequacy and completeness of a protocol. Eleven chapters cover all aspects of research design, including: developing study objectives, defining and refining study questions, addressing the heterogeneity of treatment effect, characterizing exposure, selecting a comparator, defining and measuring outcomes, and identifying optimal data sources. Checklists of guidance and key considerations for protocols are provided at the end of each chapter. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews. More more information, please consult the Agency website: www.effectivehealthcare.ahrq.gov)

Basics and Trends in Sensitivity Analysis: Theory and Practice in R

Basics and Trends in Sensitivity Analysis: Theory and Practice in R PDF Author: Sébastien Da Veiga
Publisher: SIAM
ISBN: 1611976693
Category : Mathematics
Languages : en
Pages : 307

Get Book Here

Book Description
This book provides an overview of global sensitivity analysis methods and algorithms, including their theoretical basis and mathematical properties. The authors use a practical point of view and real case studies as well as numerous examples, and applications of the different approaches are illustrated throughout using R code to explain their usage and usefulness in practice. Basics and Trends in Sensitivity Analysis: Theory and Practice in R covers a lot of material, including theoretical aspects of Sobol’ indices as well as sampling-based formulas, spectral methods, and metamodel-based approaches for estimation purposes; screening techniques devoted to identifying influential and noninfluential inputs; variance-based measures when model inputs are statistically dependent (and several other approaches that go beyond variance-based sensitivity measures); and a case study in R related to a COVID-19 epidemic model where the full workflow of sensitivity analysis combining several techniques is presented. This book is intended for engineers, researchers, and undergraduate students who use complex numerical models and have an interest in sensitivity analysis techniques and is appropriate for anyone with a solid mathematical background in basic statistical and probability theories who develops and uses numerical models in all scientific and engineering domains.

Secondary Analysis of Electronic Health Records

Secondary Analysis of Electronic Health Records PDF Author: MIT Critical Data
Publisher: Springer
ISBN: 3319437429
Category : Medical
Languages : en
Pages : 435

Get Book Here

Book Description
This book trains the next generation of scientists representing different disciplines to leverage the data generated during routine patient care. It formulates a more complete lexicon of evidence-based recommendations and support shared, ethical decision making by doctors with their patients. Diagnostic and therapeutic technologies continue to evolve rapidly, and both individual practitioners and clinical teams face increasingly complex ethical decisions. Unfortunately, the current state of medical knowledge does not provide the guidance to make the majority of clinical decisions on the basis of evidence. The present research infrastructure is inefficient and frequently produces unreliable results that cannot be replicated. Even randomized controlled trials (RCTs), the traditional gold standards of the research reliability hierarchy, are not without limitations. They can be costly, labor intensive, and slow, and can return results that are seldom generalizable to every patient population. Furthermore, many pertinent but unresolved clinical and medical systems issues do not seem to have attracted the interest of the research enterprise, which has come to focus instead on cellular and molecular investigations and single-agent (e.g., a drug or device) effects. For clinicians, the end result is a bit of a “data desert” when it comes to making decisions. The new research infrastructure proposed in this book will help the medical profession to make ethically sound and well informed decisions for their patients.

Estimands, Estimators and Sensitivity Analysis in Clinical Trials

Estimands, Estimators and Sensitivity Analysis in Clinical Trials PDF Author: Craig Mallinckrodt
Publisher: CRC Press
ISBN: 0429950055
Category : Medical
Languages : en
Pages : 218

Get Book Here

Book Description
The concepts of estimands, analyses (estimators), and sensitivity are interrelated. Therefore, great need exists for an integrated approach to these topics. This book acts as a practical guide to developing and implementing statistical analysis plans by explaining fundamental concepts using accessible language, providing technical details, real-world examples, and SAS and R code to implement analyses. The updated ICH guideline raises new analytic and cross-functional challenges for statisticians. Gaps between different communities have come to surface, such as between causal inference and clinical trialists, as well as among clinicians, statisticians, and regulators when it comes to communicating decision-making objectives, assumptions, and interpretations of evidence. This book lays out a path toward bridging some of these gaps. It offers  A common language and unifying framework along with the technical details and practical guidance to help statisticians meet the challenges  A thorough treatment of intercurrent events (ICEs), i.e., postrandomization events that confound interpretation of outcomes and five strategies for ICEs in ICH E9 (R1)  Details on how estimands, integrated into a principled study development process, lay a foundation for coherent specification of trial design, conduct, and analysis needed to overcome the issues caused by ICEs:  A perspective on the role of the intention-to-treat principle  Examples and case studies from various areas  Example code in SAS and R  A connection with causal inference  Implications and methods for analysis of longitudinal trials with missing data Together, the authors have offered the readers their ample expertise in clinical trial design and analysis, from an industrial and academic perspective.

Data Analysis

Data Analysis PDF Author: Devinderjit Sivia
Publisher: OUP Oxford
ISBN: 0191546704
Category : Mathematics
Languages : en
Pages : 259

Get Book Here

Book Description
One of the strengths of this book is the author's ability to motivate the use of Bayesian methods through simple yet effective examples. - Katie St. Clair MAA Reviews.

Uncertainty in Industrial Practice

Uncertainty in Industrial Practice PDF Author: Etienne de Rocquigny
Publisher: John Wiley & Sons
ISBN: 0470770740
Category : Mathematics
Languages : en
Pages : 364

Get Book Here

Book Description
Managing uncertainties in industrial systems is a daily challenge to ensure improved design, robust operation, accountable performance and responsive risk control. Authored by a leading European network of experts representing a cross section of industries, Uncertainty in Industrial Practice aims to provide a reference for the dissemination of uncertainty treatment in any type of industry. It is concerned with the quantification of uncertainties in the presence of data, model(s) and knowledge about the system, and offers a technical contribution to decision-making processes whilst acknowledging industrial constraints. The approach presented can be applied to a range of different business contexts, from research or early design through to certification or in-service processes. The authors aim to foster optimal trade-offs between literature-referenced methodologies and the simplified approaches often inevitable in practice, owing to data, time or budget limitations of technical decision-makers. Uncertainty in Industrial Practice: Features recent uncertainty case studies carried out in the nuclear, air & space, oil, mechanical and civil engineering industries set in a common methodological framework. Presents methods for organizing and treating uncertainties in a generic and prioritized perspective. Illustrates practical difficulties and solutions encountered according to the level of complexity, information available and regulatory and financial constraints. Discusses best practice in uncertainty modeling, propagation and sensitivity analysis through a variety of statistical and numerical methods. Reviews recent standards, references and available software, providing an essential resource for engineers and risk analysts in a wide variety of industries. This book provides a guide to dealing with quantitative uncertainty in engineering and modelling and is aimed at practitioners, including risk-industry regulators and academics wishing to develop industry-realistic methodologies.