Author: Jan Okni?ski
Publisher: World Scientific
ISBN: 9789810234454
Category : Mathematics
Languages : en
Pages : 336
Book Description
This book is concerned with the structure of linear semigroups, that is, subsemigroups of the multiplicative semigroup Mn(K) of n ? n matrices over a field K (or, more generally, skew linear semigroups ? if K is allowed to be a division ring) and its applications to certain problems on associative algebras, semigroups and linear representations. It is motivated by several recent developments in the area of linear semigroups and their applications. It summarizes the state of knowledge in this area, presenting the results for the first time in a unified form. The book's point of departure is a structure theorem, which allows the use of powerful techniques of linear groups. Certain aspects of a combinatorial nature, connections with the theory of linear representations and applications to various problems on associative algebras are also discussed.
Semigroups of Matrices
Author: Jan Okni?ski
Publisher: World Scientific
ISBN: 9789810234454
Category : Mathematics
Languages : en
Pages : 336
Book Description
This book is concerned with the structure of linear semigroups, that is, subsemigroups of the multiplicative semigroup Mn(K) of n ? n matrices over a field K (or, more generally, skew linear semigroups ? if K is allowed to be a division ring) and its applications to certain problems on associative algebras, semigroups and linear representations. It is motivated by several recent developments in the area of linear semigroups and their applications. It summarizes the state of knowledge in this area, presenting the results for the first time in a unified form. The book's point of departure is a structure theorem, which allows the use of powerful techniques of linear groups. Certain aspects of a combinatorial nature, connections with the theory of linear representations and applications to various problems on associative algebras are also discussed.
Publisher: World Scientific
ISBN: 9789810234454
Category : Mathematics
Languages : en
Pages : 336
Book Description
This book is concerned with the structure of linear semigroups, that is, subsemigroups of the multiplicative semigroup Mn(K) of n ? n matrices over a field K (or, more generally, skew linear semigroups ? if K is allowed to be a division ring) and its applications to certain problems on associative algebras, semigroups and linear representations. It is motivated by several recent developments in the area of linear semigroups and their applications. It summarizes the state of knowledge in this area, presenting the results for the first time in a unified form. The book's point of departure is a structure theorem, which allows the use of powerful techniques of linear groups. Certain aspects of a combinatorial nature, connections with the theory of linear representations and applications to various problems on associative algebras are also discussed.
Semigroups Of Matrices
Author: Jan Okninski
Publisher: World Scientific
ISBN: 981449626X
Category : Mathematics
Languages : en
Pages : 327
Book Description
This book is concerned with the structure of linear semigroups, that is, subsemigroups of the multiplicative semigroup Mn(K) of n × n matrices over a field K (or, more generally, skew linear semigroups — if K is allowed to be a division ring) and its applications to certain problems on associative algebras, semigroups and linear representations. It is motivated by several recent developments in the area of linear semigroups and their applications. It summarizes the state of knowledge in this area, presenting the results for the first time in a unified form. The book's point of departure is a structure theorem, which allows the use of powerful techniques of linear groups. Certain aspects of a combinatorial nature, connections with the theory of linear representations and applications to various problems on associative algebras are also discussed.
Publisher: World Scientific
ISBN: 981449626X
Category : Mathematics
Languages : en
Pages : 327
Book Description
This book is concerned with the structure of linear semigroups, that is, subsemigroups of the multiplicative semigroup Mn(K) of n × n matrices over a field K (or, more generally, skew linear semigroups — if K is allowed to be a division ring) and its applications to certain problems on associative algebras, semigroups and linear representations. It is motivated by several recent developments in the area of linear semigroups and their applications. It summarizes the state of knowledge in this area, presenting the results for the first time in a unified form. The book's point of departure is a structure theorem, which allows the use of powerful techniques of linear groups. Certain aspects of a combinatorial nature, connections with the theory of linear representations and applications to various problems on associative algebras are also discussed.
The Algebraic Theory of Semigroups, Volume II
Author: Alfred Hoblitzelle Clifford
Publisher: American Mathematical Soc.
ISBN: 0821802720
Category : Group theory
Languages : en
Pages : 370
Book Description
Publisher: American Mathematical Soc.
ISBN: 0821802720
Category : Group theory
Languages : en
Pages : 370
Book Description
Semigroup Algebras
Author: Jan Okninski
Publisher: CRC Press
ISBN: 1000147665
Category : Mathematics
Languages : en
Pages : 319
Book Description
Gathers and unifies the results of the theory of noncommutative semigroup rings, primarily drawing on the literature of the last 10 years, and including several new results. Okninski (Warsaw U., Poland) restricts coverage to the ring theoretical properties for which a systematic treatment is current
Publisher: CRC Press
ISBN: 1000147665
Category : Mathematics
Languages : en
Pages : 319
Book Description
Gathers and unifies the results of the theory of noncommutative semigroup rings, primarily drawing on the literature of the last 10 years, and including several new results. Okninski (Warsaw U., Poland) restricts coverage to the ring theoretical properties for which a systematic treatment is current
Nonnegative Matrices in the Mathematical Sciences
Author: Abraham Berman
Publisher: Academic Press
ISBN: 1483260860
Category : Mathematics
Languages : en
Pages : 337
Book Description
Nonnegative Matrices in the Mathematical Sciences provides information pertinent to the fundamental aspects of the theory of nonnegative matrices. This book describes selected applications of the theory to numerical analysis, probability, economics, and operations research. Organized into 10 chapters, this book begins with an overview of the properties of nonnegative matrices. This text then examines the inverse-positive matrices. Other chapters consider the basic approaches to the study of nonnegative matrices, namely, geometrical and combinatorial. This book discusses as well some useful ideas from the algebraic theory of semigroups and considers a canonical form for nonnegative idempotent matrices and special types of idempotent matrices. The final chapter deals with the linear complementary problem (LCP). This book is a valuable resource for mathematical economists, mathematical programmers, statisticians, mathematicians, and computer scientists.
Publisher: Academic Press
ISBN: 1483260860
Category : Mathematics
Languages : en
Pages : 337
Book Description
Nonnegative Matrices in the Mathematical Sciences provides information pertinent to the fundamental aspects of the theory of nonnegative matrices. This book describes selected applications of the theory to numerical analysis, probability, economics, and operations research. Organized into 10 chapters, this book begins with an overview of the properties of nonnegative matrices. This text then examines the inverse-positive matrices. Other chapters consider the basic approaches to the study of nonnegative matrices, namely, geometrical and combinatorial. This book discusses as well some useful ideas from the algebraic theory of semigroups and considers a canonical form for nonnegative idempotent matrices and special types of idempotent matrices. The final chapter deals with the linear complementary problem (LCP). This book is a valuable resource for mathematical economists, mathematical programmers, statisticians, mathematicians, and computer scientists.
Simultaneous Triangularization
Author: Heydar Radjavi
Publisher: Springer
ISBN: 1461212006
Category : Mathematics
Languages : en
Pages : 327
Book Description
This volume is designed to appeal to two different, yet intersecting audiences: linear algebraists and operator theorists. The first half contains a thorough treatment of classical and recent results on triangularization of collections of matrices, while the remainder describes what is known about extensions to linear operators on Banach spaces. It will thus be useful to everyone interested in matrices or operators since the results involve many other topics.
Publisher: Springer
ISBN: 1461212006
Category : Mathematics
Languages : en
Pages : 327
Book Description
This volume is designed to appeal to two different, yet intersecting audiences: linear algebraists and operator theorists. The first half contains a thorough treatment of classical and recent results on triangularization of collections of matrices, while the remainder describes what is known about extensions to linear operators on Banach spaces. It will thus be useful to everyone interested in matrices or operators since the results involve many other topics.
Numerical Semigroups
Author: Valentina Barucci
Publisher: Springer Nature
ISBN: 3030408221
Category : Mathematics
Languages : en
Pages : 373
Book Description
This book presents the state of the art on numerical semigroups and related subjects, offering different perspectives on research in the field and including results and examples that are very difficult to find in a structured exposition elsewhere. The contents comprise the proceedings of the 2018 INdAM “International Meeting on Numerical Semigroups”, held in Cortona, Italy. Talks at the meeting centered not only on traditional types of numerical semigroups, such as Arf or symmetric, and their usual properties, but also on related types of semigroups, such as affine, Puiseux, Weierstrass, and primary, and their applications in other branches of algebra, including semigroup rings, coding theory, star operations, and Hilbert functions. The papers in the book reflect the variety of the talks and derive from research areas including Semigroup Theory, Factorization Theory, Algebraic Geometry, Combinatorics, Commutative Algebra, Coding Theory, and Number Theory. The book is intended for researchers and students who want to learn about recent developments in the theory of numerical semigroups and its connections with other research fields.
Publisher: Springer Nature
ISBN: 3030408221
Category : Mathematics
Languages : en
Pages : 373
Book Description
This book presents the state of the art on numerical semigroups and related subjects, offering different perspectives on research in the field and including results and examples that are very difficult to find in a structured exposition elsewhere. The contents comprise the proceedings of the 2018 INdAM “International Meeting on Numerical Semigroups”, held in Cortona, Italy. Talks at the meeting centered not only on traditional types of numerical semigroups, such as Arf or symmetric, and their usual properties, but also on related types of semigroups, such as affine, Puiseux, Weierstrass, and primary, and their applications in other branches of algebra, including semigroup rings, coding theory, star operations, and Hilbert functions. The papers in the book reflect the variety of the talks and derive from research areas including Semigroup Theory, Factorization Theory, Algebraic Geometry, Combinatorics, Commutative Algebra, Coding Theory, and Number Theory. The book is intended for researchers and students who want to learn about recent developments in the theory of numerical semigroups and its connections with other research fields.
Fields and Rings
Author: Irving Kaplansky
Publisher: University of Chicago Press
ISBN: 0226424510
Category : Mathematics
Languages : en
Pages : 217
Book Description
This book combines in one volume Irving Kaplansky's lecture notes on the theory of fields, ring theory, and homological dimensions of rings and modules. "In all three parts of this book the author lives up to his reputation as a first-rate mathematical stylist. Throughout the work the clarity and precision of the presentation is not only a source of constant pleasure but will enable the neophyte to master the material here presented with dispatch and ease."—A. Rosenberg, Mathematical Reviews
Publisher: University of Chicago Press
ISBN: 0226424510
Category : Mathematics
Languages : en
Pages : 217
Book Description
This book combines in one volume Irving Kaplansky's lecture notes on the theory of fields, ring theory, and homological dimensions of rings and modules. "In all three parts of this book the author lives up to his reputation as a first-rate mathematical stylist. Throughout the work the clarity and precision of the presentation is not only a source of constant pleasure but will enable the neophyte to master the material here presented with dispatch and ease."—A. Rosenberg, Mathematical Reviews
Positive Operator Semigroups
Author: András Bátkai
Publisher: Birkhäuser
ISBN: 3319428136
Category : Mathematics
Languages : en
Pages : 366
Book Description
This book gives a gentle but up-to-date introduction into the theory of operator semigroups (or linear dynamical systems), which can be used with great success to describe the dynamics of complicated phenomena arising in many applications. Positivity is a property which naturally appears in physical, chemical, biological or economic processes. It adds a beautiful and far reaching mathematical structure to the dynamical systems and operators describing these processes. In the first part, the finite dimensional theory in a coordinate-free way is developed, which is difficult to find in literature. This is a good opportunity to present the main ideas of the Perron-Frobenius theory in a way which can be used in the infinite dimensional situation. Applications to graph matrices, age structured population models and economic models are discussed. The infinite dimensional theory of positive operator semigroups with their spectral and asymptotic theory is developed in the second part. Recent applications illustrate the theory, like population equations, neutron transport theory, delay equations or flows in networks. Each chapter is accompanied by a large set of exercises. An up-to-date bibliography and a detailed subject index help the interested reader. The book is intended primarily for graduate and master students. The finite dimensional part, however, can be followed by an advanced bachelor with a solid knowledge of linear algebra and calculus.
Publisher: Birkhäuser
ISBN: 3319428136
Category : Mathematics
Languages : en
Pages : 366
Book Description
This book gives a gentle but up-to-date introduction into the theory of operator semigroups (or linear dynamical systems), which can be used with great success to describe the dynamics of complicated phenomena arising in many applications. Positivity is a property which naturally appears in physical, chemical, biological or economic processes. It adds a beautiful and far reaching mathematical structure to the dynamical systems and operators describing these processes. In the first part, the finite dimensional theory in a coordinate-free way is developed, which is difficult to find in literature. This is a good opportunity to present the main ideas of the Perron-Frobenius theory in a way which can be used in the infinite dimensional situation. Applications to graph matrices, age structured population models and economic models are discussed. The infinite dimensional theory of positive operator semigroups with their spectral and asymptotic theory is developed in the second part. Recent applications illustrate the theory, like population equations, neutron transport theory, delay equations or flows in networks. Each chapter is accompanied by a large set of exercises. An up-to-date bibliography and a detailed subject index help the interested reader. The book is intended primarily for graduate and master students. The finite dimensional part, however, can be followed by an advanced bachelor with a solid knowledge of linear algebra and calculus.
Combinatorial Algebra: Syntax and Semantics
Author: Mark V. Sapir
Publisher: Springer
ISBN: 3319080318
Category : Mathematics
Languages : en
Pages : 369
Book Description
Combinatorial Algebra: Syntax and Semantics provides comprehensive account of many areas of combinatorial algebra. It contains self-contained proofs of more than 20 fundamental results, both classical and modern. This includes Golod–Shafarevich and Olshanskii's solutions of Burnside problems, Shirshov's solution of Kurosh's problem for PI rings, Belov's solution of Specht's problem for varieties of rings, Grigorchuk's solution of Milnor's problem, Bass–Guivarc'h theorem about growth of nilpotent groups, Kleiman's solution of Hanna Neumann's problem for varieties of groups, Adian's solution of von Neumann-Day's problem, Trahtman's solution of the road coloring problem of Adler, Goodwyn and Weiss. The book emphasize several ``universal" tools, such as trees, subshifts, uniformly recurrent words, diagrams and automata. With over 350 exercises at various levels of difficulty and with hints for the more difficult problems, this book can be used as a textbook, and aims to reach a wide and diversified audience. No prerequisites beyond standard courses in linear and abstract algebra are required. The broad appeal of this textbook extends to a variety of student levels: from advanced high-schoolers to undergraduates and graduate students, including those in search of a Ph.D. thesis who will benefit from the “Further reading and open problems” sections at the end of Chapters 2 –5. The book can also be used for self-study, engaging those beyond t he classroom setting: researchers, instructors, students, virtually anyone who wishes to learn and better understand this important area of mathematics.
Publisher: Springer
ISBN: 3319080318
Category : Mathematics
Languages : en
Pages : 369
Book Description
Combinatorial Algebra: Syntax and Semantics provides comprehensive account of many areas of combinatorial algebra. It contains self-contained proofs of more than 20 fundamental results, both classical and modern. This includes Golod–Shafarevich and Olshanskii's solutions of Burnside problems, Shirshov's solution of Kurosh's problem for PI rings, Belov's solution of Specht's problem for varieties of rings, Grigorchuk's solution of Milnor's problem, Bass–Guivarc'h theorem about growth of nilpotent groups, Kleiman's solution of Hanna Neumann's problem for varieties of groups, Adian's solution of von Neumann-Day's problem, Trahtman's solution of the road coloring problem of Adler, Goodwyn and Weiss. The book emphasize several ``universal" tools, such as trees, subshifts, uniformly recurrent words, diagrams and automata. With over 350 exercises at various levels of difficulty and with hints for the more difficult problems, this book can be used as a textbook, and aims to reach a wide and diversified audience. No prerequisites beyond standard courses in linear and abstract algebra are required. The broad appeal of this textbook extends to a variety of student levels: from advanced high-schoolers to undergraduates and graduate students, including those in search of a Ph.D. thesis who will benefit from the “Further reading and open problems” sections at the end of Chapters 2 –5. The book can also be used for self-study, engaging those beyond t he classroom setting: researchers, instructors, students, virtually anyone who wishes to learn and better understand this important area of mathematics.