Semi-Infinite Programming

Semi-Infinite Programming PDF Author: Rembert Reemtsen
Publisher: Springer Science & Business Media
ISBN: 1475728689
Category : Computers
Languages : en
Pages : 418

Get Book Here

Book Description
Semi-infinite programming (briefly: SIP) is an exciting part of mathematical programming. SIP problems include finitely many variables and, in contrast to finite optimization problems, infinitely many inequality constraints. Prob lems of this type naturally arise in approximation theory, optimal control, and at numerous engineering applications where the model contains at least one inequality constraint for each value of a parameter and the parameter, repre senting time, space, frequency etc., varies in a given domain. The treatment of such problems requires particular theoretical and numerical techniques. The theory in SIP as well as the number of numerical SIP methods and appli cations have expanded very fast during the last years. Therefore, the main goal of this monograph is to provide a collection of tutorial and survey type articles which represent a substantial part of the contemporary body of knowledge in SIP. We are glad that leading researchers have contributed to this volume and that their articles are covering a wide range of important topics in this subject. It is our hope that both experienced students and scientists will be well advised to consult this volume. We got the idea for this volume when we were organizing the semi-infinite pro gramming workshop which was held in Cottbus, Germany, in September 1996.

Semi-Infinite Programming

Semi-Infinite Programming PDF Author: Rembert Reemtsen
Publisher: Springer Science & Business Media
ISBN: 1475728689
Category : Computers
Languages : en
Pages : 418

Get Book Here

Book Description
Semi-infinite programming (briefly: SIP) is an exciting part of mathematical programming. SIP problems include finitely many variables and, in contrast to finite optimization problems, infinitely many inequality constraints. Prob lems of this type naturally arise in approximation theory, optimal control, and at numerous engineering applications where the model contains at least one inequality constraint for each value of a parameter and the parameter, repre senting time, space, frequency etc., varies in a given domain. The treatment of such problems requires particular theoretical and numerical techniques. The theory in SIP as well as the number of numerical SIP methods and appli cations have expanded very fast during the last years. Therefore, the main goal of this monograph is to provide a collection of tutorial and survey type articles which represent a substantial part of the contemporary body of knowledge in SIP. We are glad that leading researchers have contributed to this volume and that their articles are covering a wide range of important topics in this subject. It is our hope that both experienced students and scientists will be well advised to consult this volume. We got the idea for this volume when we were organizing the semi-infinite pro gramming workshop which was held in Cottbus, Germany, in September 1996.

Semi-Infinite Programming

Semi-Infinite Programming PDF Author: Miguel Ángel Goberna
Publisher: Springer Science & Business Media
ISBN: 1475734034
Category : Computers
Languages : en
Pages : 392

Get Book Here

Book Description
Semi-infinite programming (SIP) deals with optimization problems in which either the number of decision variables or the number of constraints is finite. This book presents the state of the art in SIP in a suggestive way, bringing the powerful SIP tools close to the potential users in different scientific and technological fields. The volume is divided into four parts. Part I reviews the first decade of SIP (1962-1972). Part II analyses convex and generalised SIP, conic linear programming, and disjunctive programming. New numerical methods for linear, convex, and continuously differentiable SIP problems are proposed in Part III. Finally, Part IV provides an overview of the applications of SIP to probability, statistics, experimental design, robotics, optimization under uncertainty, production games, and separation problems. Audience: This book is an indispensable reference and source for advanced students and researchers in applied mathematics and engineering.

Linear Semi-Infinite Optimization

Linear Semi-Infinite Optimization PDF Author: Miguel A. Goberna
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 380

Get Book Here

Book Description
A linear semi-infinite program is an optimization problem with linear objective functions and linear constraints in which either the number of unknowns or the number of constraints is finite. The many direct applications of linear semi-infinite optimization (or programming) have prompted considerable and increasing research effort in recent years. The authors' aim is to communicate the main theoretical ideas and applications techniques of this fascinating area, from the perspective of convex analysis. The four sections of the book cover: * Modelling with primal and dual problems - the primal problem, space of dual variables, the dual problem. * Linear semi-infinite systems - existence theorems, alternative theorems, redundancy phenomena, geometrical properties of the solution set. * Theory of linear semi-infinite programming - optimality, duality, boundedness, perturbations, well-posedness. * Methods of linear semi-infinite programming - an overview of the main numerical methods for primal and dual problems. Exercises and examples are provided to illustrate both theory and applications. The reader is assumed to be familiar with elementary calculus, linear algebra and general topology. An appendix on convex analysis is provided to ensure that the book is self-contained. Graduate students and researchers wishing to gain a deeper understanding of the main ideas behind the theory of linear optimization will find this book to be an essential text.

Completely Positive Matrices

Completely Positive Matrices PDF Author: Abraham Berman
Publisher: World Scientific
ISBN: 9789812795212
Category : Mathematics
Languages : en
Pages : 222

Get Book Here

Book Description
A real matrix is positive semidefinite if it can be decomposed as A = BBOC . In some applications the matrix B has to be elementwise nonnegative. If such a matrix exists, A is called completely positive. The smallest number of columns of a nonnegative matrix B such that A = BBOC is known as the cp- rank of A . This invaluable book focuses on necessary conditions and sufficient conditions for complete positivity, as well as bounds for the cp- rank. The methods are combinatorial, geometric and algebraic. The required background on nonnegative matrices, cones, graphs and Schur complements is outlined. Contents: Preliminaries: Matrix Theoretic Background; Positive Semidefinite Matrices; Nonnegative Matrices and M -Matrices; Schur Complements; Graphs; Convex Cones; The PSD Completion Problem; Complete Positivity: Definition and Basic Properties; Cones of Completely Positive Matrices; Small Matrices; Complete Positivity and the Comparison Matrix; Completely Positive Graphs; Completely Positive Matrices Whose Graphs are Not Completely Positive; Square Factorizations; Functions of Completely Positive Matrices; The CP Completion Problem; CP Rank: Definition and Basic Results; Completely Positive Matrices of a Given Rank; Completely Positive Matrices of a Given Order; When is the CP-Rank Equal to the Rank?. Readership: Upper level undergraduates, graduate students, academics and researchers interested in matrix theory."

Convex and Stochastic Optimization

Convex and Stochastic Optimization PDF Author: J. Frédéric Bonnans
Publisher: Springer
ISBN: 3030149773
Category : Mathematics
Languages : en
Pages : 320

Get Book Here

Book Description
This textbook provides an introduction to convex duality for optimization problems in Banach spaces, integration theory, and their application to stochastic programming problems in a static or dynamic setting. It introduces and analyses the main algorithms for stochastic programs, while the theoretical aspects are carefully dealt with. The reader is shown how these tools can be applied to various fields, including approximation theory, semidefinite and second-order cone programming and linear decision rules. This textbook is recommended for students, engineers and researchers who are willing to take a rigorous approach to the mathematics involved in the application of duality theory to optimization with uncertainty.

Algorithmic Foundations of Robotics XIII

Algorithmic Foundations of Robotics XIII PDF Author: Marco Morales
Publisher: Springer Nature
ISBN: 3030440516
Category : Technology & Engineering
Languages : en
Pages : 962

Get Book Here

Book Description
This book gathers the outcomes of the thirteenth Workshop on the Algorithmic Foundations of Robotics (WAFR), the premier event for showcasing cutting-edge research on algorithmic robotics. The latest WAFR, held at Universidad Politécnica de Yucatán in Mérida, México on December 9–11, 2018, continued this tradition. This book contains fifty-four papers presented at WAFR, which highlight the latest research on fundamental algorithmic robotics (e.g., planning, learning, navigation, control, manipulation, optimality, completeness, and complexity) demonstrated through several applications involving multi-robot systems, perception, and contact manipulation. Addressing a diverse range of topics in papers prepared by expert contributors, the book reflects the state of the art and outlines future directions in the field of algorithmic robotics.

Optimization

Optimization PDF Author: Elijah Polak
Publisher: Springer Science & Business Media
ISBN: 1461206634
Category : Mathematics
Languages : en
Pages : 801

Get Book Here

Book Description
This book deals with optimality conditions, algorithms, and discretization tech niques for nonlinear programming, semi-infinite optimization, and optimal con trol problems. The unifying thread in the presentation consists of an abstract theory, within which optimality conditions are expressed in the form of zeros of optimality junctions, algorithms are characterized by point-to-set iteration maps, and all the numerical approximations required in the solution of semi-infinite optimization and optimal control problems are treated within the context of con sistent approximations and algorithm implementation techniques. Traditionally, necessary optimality conditions for optimization problems are presented in Lagrange, F. John, or Karush-Kuhn-Tucker multiplier forms, with gradients used for smooth problems and subgradients for nonsmooth prob lems. We present these classical optimality conditions and show that they are satisfied at a point if and only if this point is a zero of an upper semicontinuous optimality junction. The use of optimality functions has several advantages. First, optimality functions can be used in an abstract study of optimization algo rithms. Second, many optimization algorithms can be shown to use search directions that are obtained in evaluating optimality functions, thus establishing a clear relationship between optimality conditions and algorithms. Third, estab lishing optimality conditions for highly complex problems, such as optimal con trol problems with control and trajectory constraints, is much easier in terms of optimality functions than in the classical manner. In addition, the relationship between optimality conditions for finite-dimensional problems and semi-infinite optimization and optimal control problems becomes transparent.

Mathematical Programming with Data Perturbations

Mathematical Programming with Data Perturbations PDF Author: Anthony V. Fiacco
Publisher: CRC Press
ISBN: 9780824700591
Category : Mathematics
Languages : en
Pages : 460

Get Book Here

Book Description
Presents research contributions and tutorial expositions on current methodologies for sensitivity, stability and approximation analyses of mathematical programming and related problem structures involving parameters. The text features up-to-date findings on important topics, covering such areas as the effect of perturbations on the performance of algorithms, approximation techniques for optimal control problems, and global error bounds for convex inequalities.

Constrained Optimization and Lagrange Multiplier Methods

Constrained Optimization and Lagrange Multiplier Methods PDF Author: Dimitri P. Bertsekas
Publisher: Academic Press
ISBN: 148326047X
Category : Mathematics
Languages : en
Pages : 412

Get Book Here

Book Description
Computer Science and Applied Mathematics: Constrained Optimization and Lagrange Multiplier Methods focuses on the advancements in the applications of the Lagrange multiplier methods for constrained minimization. The publication first offers information on the method of multipliers for equality constrained problems and the method of multipliers for inequality constrained and nondifferentiable optimization problems. Discussions focus on approximation procedures for nondifferentiable and ill-conditioned optimization problems; asymptotically exact minimization in the methods of multipliers; duality framework for the method of multipliers; and the quadratic penalty function method. The text then examines exact penalty methods, including nondifferentiable exact penalty functions; linearization algorithms based on nondifferentiable exact penalty functions; differentiable exact penalty functions; and local and global convergence of Lagrangian methods. The book ponders on the nonquadratic penalty functions of convex programming. Topics include large scale separable integer programming problems and the exponential method of multipliers; classes of penalty functions and corresponding methods of multipliers; and convergence analysis of multiplier methods. The text is a valuable reference for mathematicians and researchers interested in the Lagrange multiplier methods.

Pseudolinear Functions and Optimization

Pseudolinear Functions and Optimization PDF Author: Shashi Kant Mishra
Publisher: CRC Press
ISBN: 1482255758
Category : Business & Economics
Languages : en
Pages : 509

Get Book Here

Book Description
Pseudolinear Functions and Optimization is the first book to focus exclusively on pseudolinear functions, a class of generalized convex functions. It discusses the properties, characterizations, and applications of pseudolinear functions in nonlinear optimization problems.The book describes the characterizations of solution sets of various optimiza