Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation (AM-154)

Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation (AM-154) PDF Author: Spyridon Kamvissis
Publisher: Princeton University Press
ISBN: 1400837189
Category : Mathematics
Languages : en
Pages : 280

Get Book Here

Book Description
This book represents the first asymptotic analysis, via completely integrable techniques, of the initial value problem for the focusing nonlinear Schrödinger equation in the semiclassical asymptotic regime. This problem is a key model in nonlinear optical physics and has increasingly important applications in the telecommunications industry. The authors exploit complete integrability to establish pointwise asymptotics for this problem's solution in the semiclassical regime and explicit integration for the underlying nonlinear, elliptic, partial differential equations suspected of governing the semiclassical behavior. In doing so they also aim to explain the observed gradient catastrophe for the underlying nonlinear elliptic partial differential equations, and to set forth a detailed, pointwise asymptotic description of the violent oscillations that emerge following the gradient catastrophe. To achieve this, the authors have extended the reach of two powerful analytical techniques that have arisen through the asymptotic analysis of integrable systems: the Lax-Levermore-Venakides variational approach to singular limits in integrable systems, and Deift and Zhou's nonlinear Steepest-Descent/Stationary Phase method for the analysis of Riemann-Hilbert problems. In particular, they introduce a systematic procedure for handling certain Riemann-Hilbert problems with poles accumulating on curves in the plane. This book, which includes an appendix on the use of the Fredholm theory for Riemann-Hilbert problems in the Hölder class, is intended for researchers and graduate students of applied mathematics and analysis, especially those with an interest in integrable systems, nonlinear waves, or complex analysis.

Semi-classical Analysis For Nonlinear Schrodinger Equations: Wkb Analysis, Focal Points, Coherent States (Second Edition)

Semi-classical Analysis For Nonlinear Schrodinger Equations: Wkb Analysis, Focal Points, Coherent States (Second Edition) PDF Author: Remi Carles
Publisher: World Scientific
ISBN: 9811227926
Category : Mathematics
Languages : en
Pages : 367

Get Book Here

Book Description
The second edition of this book consists of three parts. The first one is dedicated to the WKB methods and the semi-classical limit before the formation of caustics. The second part treats the semi-classical limit in the presence of caustics, in the special geometric case where the caustic is reduced to a point (or to several isolated points). The third part is new in this edition, and addresses the nonlinear propagation of coherent states. The three parts are essentially independent.Compared with the first edition, the first part is enriched by a new section on multiphase expansions in the case of weakly nonlinear geometric optics, and an application related to this study, concerning instability results for nonlinear Schrödinger equations in negative order Sobolev spaces.The third part is an overview of results concerning nonlinear effects in the propagation of coherent states, in the case of a power nonlinearity, and in the richer case of Hartree-like nonlinearities. It includes explicit formulas of an independent interest, such as generalized Mehler's formula, generalized lens transform.

Wigner Measure and Semiclassical Limits of Nonlinear Schrödinger Equations

Wigner Measure and Semiclassical Limits of Nonlinear Schrödinger Equations PDF Author: Ping Zhang
Publisher: American Mathematical Soc.
ISBN: 9780821883563
Category : Mathematics
Languages : en
Pages : 212

Get Book Here

Book Description
"This book is based on a course entitled "Wigner measures and semiclassical limits of nonlinear Schrodinger equations," which the author taught at the Courant Institute of Mathematical Sciences at New York University in the spring of 2007. The author's main purpose is to apply the theory of semiclassical pseudodifferential operators to the study of various high-frequency limits of equations from quantum mechanics. In particular, the focus of attention is on Wigner measure and recent progress on how to use it as a tool to study various problems arising from semiclassical limits of Schrodinger-type equations." "At the end of each chapter, the reader will find references and remarks about recent progress on related problems. The book is self-contained and is suitable for an advanced graduate course on the topic."--BOOK JACKET.

Semi-classical Analysis for Nonlinear Schrödinger Equations

Semi-classical Analysis for Nonlinear Schrödinger Equations PDF Author: Rémi Carles
Publisher: World Scientific Publishing Company
ISBN: 9789811227905
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
The second edition of this book consists of three parts. The first one is dedicated to the WKB methods and the semi-classical limit before the formation of caustics. The second part treats the semi-classical limit in the presence of caustics, in the special geometric case where the caustic is reduced to a point (or to several isolated points). The third part is new in this edition, and addresses the nonlinear propagation of coherent states. The three parts are essentially independent. Compared with the first edition, the first part is enriched by a new section on multiphase expansions in the case of weakly nonlinear geometric optics, and an application related to this study, concerning instability results for nonlinear Schrdinger equations in negative order Sobolev spaces. The third part is an overview of results concerning nonlinear effects in the propagation of coherent states, in the case of a power nonlinearity, and in the richer case of Hartree-like nonlinearities. It includes explicit formulas of an independent interest, such as generalized Mehler's formula, generalized lens transform.

Semi-classical Analysis for Nonlinear Schrödinger Equations

Semi-classical Analysis for Nonlinear Schrödinger Equations PDF Author: Rémi Carles
Publisher: World Scientific Publishing Company Incorporated
ISBN: 9812793127
Category : Mathematics
Languages : en
Pages : 243

Get Book Here

Book Description


Semiclassical Analysis

Semiclassical Analysis PDF Author: Maciej Zworski
Publisher: American Mathematical Soc.
ISBN: 0821883208
Category : Mathematics
Languages : en
Pages : 448

Get Book Here

Book Description
"...A graduate level text introducing readers to semiclassical and microlocal methods in PDE." -- from xi.

Discrete and Continuous Nonlinear Schrödinger Systems

Discrete and Continuous Nonlinear Schrödinger Systems PDF Author: M. J. Ablowitz
Publisher: Cambridge University Press
ISBN: 9780521534376
Category : Mathematics
Languages : en
Pages : 276

Get Book Here

Book Description
This book presents a detailed mathematical analysis of scattering theory, obtains soliton solutions, and analyzes soliton interactions, both scalar and vector.

Recent Advances in Mathematical Analysis

Recent Advances in Mathematical Analysis PDF Author: Anna Maria Candela
Publisher: Springer Nature
ISBN: 3031200217
Category : Mathematics
Languages : en
Pages : 470

Get Book Here

Book Description
This book collects selected peer reviewed papers on the topics of Nonlinear Analysis, Functional Analysis, (Korovkin-Type) Approximation Theory, and Partial Differential Equations. The aim of the volume is, in fact, to promote the connection among those different fields in Mathematical Analysis. The book celebrates Francesco Altomare, on the occasion of his 70th anniversary.

Topological Methods, Variational Methods And Their Applications - Proceedings Of The Icm2002 Satellite Conference On Nonlinear Functional Analysis

Topological Methods, Variational Methods And Their Applications - Proceedings Of The Icm2002 Satellite Conference On Nonlinear Functional Analysis PDF Author: Haim Brezis
Publisher: World Scientific
ISBN: 9814486760
Category : Mathematics
Languages : en
Pages : 300

Get Book Here

Book Description
ICM 2002 Satellite Conference on Nonlinear Analysis was held in the period: August 14-18, 2002 at Taiyuan, Shanxi Province, China. This conference was organized by Mathematical School of Peking University, Academy of Mathematics and System Sciences of Chinese Academy of Sciences, Mathematical school of Nankai University, and Department of Mathematics of Shanxi University, and was sponsored by Shanxi Province Education Committee, Tian Yuan Mathematics Foundation, and Shanxi University.166 mathematicians from 21 countries and areas in the world attended the conference. 53 invited speakers and 30 contributors presented their lectures. This conference aims at an overview of the recent development in nonlinear analysis. It covers the following topics: variational methods, topological methods, fixed point theory, bifurcations, nonlinear spectral theory, nonlinear Schrödinger equations, semilinear elliptic equations, Hamiltonian systems, central configuration in N-body problems and variational problems arising in geometry and physics.

Topological Methods, Variational Methods and Their Applications

Topological Methods, Variational Methods and Their Applications PDF Author: Haim Br‚zis
Publisher: World Scientific
ISBN: 9812382623
Category : Mathematics
Languages : en
Pages : 302

Get Book Here

Book Description
ICM 2002 Satellite Conference on Nonlinear Analysis was held in the period: August 1418, 2002 at Taiyuan, Shanxi Province, China. This conference was organized by Mathematical School of Peking University, Academy of Mathematics and System Sciences of Chinese Academy of Sciences, Mathematical school of Nankai University, and Department of Mathematics of Shanxi University, and was sponsored by Shanxi Province Education Committee, Tian Yuan Mathematics Foundation, and Shanxi University. 166 mathematicians from 21 countries and areas in the world attended the conference. 53 invited speakers and 30 contributors presented their lectures. This conference aims at an overview of the recent development in nonlinear analysis. It covers the following topics: variational methods, topological methods, fixed point theory, bifurcations, nonlinear spectral theory, nonlinear Schrvdinger equations, semilinear elliptic equations, Hamiltonian systems, central configuration in N-body problems and variational problems arising in geometry and physics.