Semantic Data Mining

Semantic Data Mining PDF Author: A. Ławrynowicz
Publisher: IOS Press
ISBN: 1614997462
Category : Computers
Languages : en
Pages : 210

Get Book Here

Book Description
Ontologies are now increasingly used to integrate, and organize data and knowledge, particularly in data and knowledge-intensive applications in both research and industry. The book is devoted to semantic data mining – a data mining approach where domain ontologies are used as background knowledge, and where the new challenge is to mine knowledge encoded in domain ontologies and knowledge graphs, rather than only purely empirical data. The introductory chapters of the book provide theoretical foundations of both data mining and ontology representation. Taking a unified perspective, the book then covers several methods for semantic data mining, addressing tasks such as pattern mining, classification and similarity-based approaches. It attempts to provide state-of-the-art answers to specific challenges and peculiarities of data mining with use of ontologies, in particular: How to deal with incompleteness of knowledge and the so-called Open World Assumption? What is a truly “semantic” similarity measure? The book contains several chapters with examples of applications of semantic data mining. The examples start from a scenario with moderate use of lightweight ontologies for knowledge graph enrichment and end with a full-fledged scenario of an intelligent knowledge discovery assistant using complex domain ontologies for meta-mining, i.e., an ontology-based meta-learning approach to full data mining processes. The book is intended for researchers in the fields of semantic technologies, knowledge engineering, data science, and data mining, and developers of knowledge-based systems and applications.

Semantic Data Mining

Semantic Data Mining PDF Author: A. Ławrynowicz
Publisher: IOS Press
ISBN: 1614997462
Category : Computers
Languages : en
Pages : 210

Get Book Here

Book Description
Ontologies are now increasingly used to integrate, and organize data and knowledge, particularly in data and knowledge-intensive applications in both research and industry. The book is devoted to semantic data mining – a data mining approach where domain ontologies are used as background knowledge, and where the new challenge is to mine knowledge encoded in domain ontologies and knowledge graphs, rather than only purely empirical data. The introductory chapters of the book provide theoretical foundations of both data mining and ontology representation. Taking a unified perspective, the book then covers several methods for semantic data mining, addressing tasks such as pattern mining, classification and similarity-based approaches. It attempts to provide state-of-the-art answers to specific challenges and peculiarities of data mining with use of ontologies, in particular: How to deal with incompleteness of knowledge and the so-called Open World Assumption? What is a truly “semantic” similarity measure? The book contains several chapters with examples of applications of semantic data mining. The examples start from a scenario with moderate use of lightweight ontologies for knowledge graph enrichment and end with a full-fledged scenario of an intelligent knowledge discovery assistant using complex domain ontologies for meta-mining, i.e., an ontology-based meta-learning approach to full data mining processes. The book is intended for researchers in the fields of semantic technologies, knowledge engineering, data science, and data mining, and developers of knowledge-based systems and applications.

Exploiting Semantic Web Knowledge Graphs in Data Mining

Exploiting Semantic Web Knowledge Graphs in Data Mining PDF Author: P. Ristoski
Publisher: IOS Press
ISBN: 1614999813
Category : Computers
Languages : en
Pages : 246

Get Book Here

Book Description
Data Mining and Knowledge Discovery in Databases (KDD) is a research field concerned with deriving higher-level insights from data. The tasks performed in this field are knowledge intensive and can benefit from additional knowledge from various sources, so many approaches have been proposed that combine Semantic Web data with the data mining and knowledge discovery process. This book, Exploiting Semantic Web Knowledge Graphs in Data Mining, aims to show that Semantic Web knowledge graphs are useful for generating valuable data mining features that can be used in various data mining tasks. In Part I, Mining Semantic Web Knowledge Graphs, the author evaluates unsupervised feature generation strategies from types and relations in knowledge graphs used in different data mining tasks such as classification, regression, and outlier detection. Part II, Semantic Web Knowledge Graphs Embeddings, proposes an approach that circumvents the shortcomings introduced with the approaches in Part I, developing an approach that is able to embed complete Semantic Web knowledge graphs in a low dimensional feature space where each entity and relation in the knowledge graph is represented as a numerical vector. Finally, Part III, Applications of Semantic Web Knowledge Graphs, describes a list of applications that exploit Semantic Web knowledge graphs like classification and regression, showing that the approaches developed in Part I and Part II can be used in applications in various domains. The book will be of interest to all those working in the field of data mining and KDD.

Applications and Developments in Semantic Process Mining

Applications and Developments in Semantic Process Mining PDF Author: Okoye, Kingsley
Publisher: IGI Global
ISBN: 1799826708
Category : Computers
Languages : en
Pages : 248

Get Book Here

Book Description
As technology becomes increasingly intelligent, various factors within the field of data science are seeing significant transformation. Process analysis is one area that is undergoing substantial development due to the implementation of semantic reasoning and web technologies. The congruence of these two systems has created various applications and developments in data processing and analysis across several professional fields. Applications and Developments in Semantic Process Mining is an essential reference source that discusses the improvement of process mining algorithms through the implementation of semantic modeling and representation. Featuring research on topics such as domain ontologies, fuzzy modeling, and information extraction, the book takes into account the different stages of process mining and its application in real time and then expounds the classical process mining techniques to semantical preparation of the extracted models for further analysis and querying at a more abstract level. The book provides a wide-ranging idea of the application and development of semantic process mining that is expected to be beneficial and used by professionals, software and data engineers, software developers, IT experts, business owners and entrepreneurs, and process analysts.

Semantic Modeling for Data

Semantic Modeling for Data PDF Author: Panos Alexopoulos
Publisher: "O'Reilly Media, Inc."
ISBN: 1492054224
Category : Computers
Languages : en
Pages : 330

Get Book Here

Book Description
What value does semantic data modeling offer? As an information architect or data science professional, let’s say you have an abundance of the right data and the technology to extract business gold—but you still fail. The reason? Bad data semantics. In this practical and comprehensive field guide, author Panos Alexopoulos takes you on an eye-opening journey through semantic data modeling as applied in the real world. You’ll learn how to master this craft to increase the usability and value of your data and applications. You’ll also explore the pitfalls to avoid and dilemmas to overcome for building high-quality and valuable semantic representations of data. Understand the fundamental concepts, phenomena, and processes related to semantic data modeling Examine the quirks and challenges of semantic data modeling and learn how to effectively leverage the available frameworks and tools Avoid mistakes and bad practices that can undermine your efforts to create good data models Learn about model development dilemmas, including representation, expressiveness and content, development, and governance Organize and execute semantic data initiatives in your organization, tackling technical, strategic, and organizational challenges

Next Generation of Data Mining

Next Generation of Data Mining PDF Author: Hillol Kargupta
Publisher: CRC Press
ISBN: 1420085875
Category : Computers
Languages : en
Pages : 640

Get Book Here

Book Description
Drawn from the US National Science Foundation's Symposium on Next Generation of Data Mining and Cyber-Enabled Discovery for Innovation (NGDM 07), Next Generation of Data Mining explores emerging technologies and applications in data mining as well as potential challenges faced by the field.Gathering perspectives from top experts across different di

Contemporary Perspectives in Data Mining, Volume 2

Contemporary Perspectives in Data Mining, Volume 2 PDF Author: Kenneth D. Lawrence
Publisher: IAP
ISBN: 1681230895
Category : Mathematics
Languages : en
Pages : 237

Get Book Here

Book Description
The series, Contemporary Perspectives on Data Mining, is composed of blind refereed scholarly research methods and applications of data mining. This series will be targeted both at the academic community, as well as the business practitioner. Data mining seeks to discover knowledge from vast amounts of data with the use of statistical and mathematical techniques. The knowledge is extracted from this data by examining the patterns of the data, whether they be associations of groups or things, predictions, sequential relationships between time order events or natural groups. Data mining applications are in marketing (customer loyalty, identifying profitable customers, instore promotions, e-commerce populations); in business (teaching data mining, efficiency of the Chinese automobile industry, moderate asset allocation funds); and techniques (veterinary predictive models, data integrity in the cloud, irregular pattern detection in a mobility network and road safety modeling.)

Semantic Systems. The Power of AI and Knowledge Graphs

Semantic Systems. The Power of AI and Knowledge Graphs PDF Author: Maribel Acosta
Publisher: Springer Nature
ISBN: 3030332209
Category : Computers
Languages : en
Pages : 400

Get Book Here

Book Description
This open access book constitutes the refereed proceedings of the 15th International Conference on Semantic Systems, SEMANTiCS 2019, held in Karlsruhe, Germany, in September 2019. The 20 full papers and 8 short papers presented in this volume were carefully reviewed and selected from 88 submissions. They cover topics such as: web semantics and linked (open) data; machine learning and deep learning techniques; semantic information management and knowledge integration; terminology, thesaurus and ontology management; data mining and knowledge discovery; semantics in blockchain and distributed ledger technologies.

Data Mining and Reverse Engineering

Data Mining and Reverse Engineering PDF Author: Stefano Spaccapietra
Publisher: Springer
ISBN: 9780412822506
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
Searching for Semantics: Data Mining, Reverse Engineering Stefano Spaccapietra Fred M aryanski Swiss Federal Institute of Technology University of Connecticut Lausanne, Switzerland Storrs, CT, USA REVIEW AND FUTURE DIRECTIONS In the last few years, database semantics research has turned sharply from a highly theoretical domain to one with more focus on practical aspects. The DS- 7 Working Conference held in October 1997 in Leysin, Switzerland, demon strated the more pragmatic orientation of the current generation of leading researchers. The papers presented at the meeting emphasized the two major areas: the discovery of semantics and semantic data modeling. The work in the latter category indicates that although object-oriented database management systems have emerged as commercially viable prod ucts, many fundamental modeling issues require further investigation. Today's object-oriented systems provide the capability to describe complex objects and include techniques for mapping from a relational database to objects. However, we must further explore the expression of information regarding the dimensions of time and space. Semantic models possess the richness to describe systems containing spatial and temporal data. The challenge of in corporating these features in a manner that promotes efficient manipulation by the subject specialist still requires extensive development.

A Semantic Web Primer, third edition

A Semantic Web Primer, third edition PDF Author: Grigoris Antoniou
Publisher: MIT Press
ISBN: 0262018284
Category : Computers
Languages : en
Pages : 287

Get Book Here

Book Description
A new edition of the widely used guide to the key ideas, languages, and technologies of the Semantic Web The development of the Semantic Web, with machine-readable content, has the potential to revolutionize the World Wide Web and its uses. A Semantic Web Primer provides an introduction and guide to this continuously evolving field, describing its key ideas, languages, and technologies. Suitable for use as a textbook or for independent study by professionals, it concentrates on undergraduate-level fundamental concepts and techniques that will enable readers to proceed with building applications on their own and includes exercises, project descriptions, and annotated references to relevant online materials. The third edition of this widely used text has been thoroughly updated, with significant new material that reflects a rapidly developing field. Treatment of the different languages (OWL2, rules) expands the coverage of RDF and OWL, defining the data model independently of XML and including coverage of N3/Turtle and RDFa. A chapter is devoted to OWL2, the new W3C standard. This edition also features additional coverage of the query language SPARQL, the rule language RIF and the possibility of interaction between rules and ontology languages and applications. The chapter on Semantic Web applications reflects the rapid developments of the past few years. A new chapter offers ideas for term projects. Additional material, including updates on the technological trends and research directions, can be found at http://www.semanticwebprimer.org.

Trends in Spatial Analysis and Modelling

Trends in Spatial Analysis and Modelling PDF Author: Martin Behnisch
Publisher: Springer
ISBN: 3319525220
Category : Science
Languages : en
Pages : 217

Get Book Here

Book Description
This book is a collection of original research papers that focus on recent developments in Spatial Analysis and Modelling with direct relevance to settlements and infrastructure. Topics include new types of data (such as simulation data), applications of methods to support decision-making, and investigations of human-environment data in order to recognize significance for structures, functions and processes of attributes. Research incorporated ranges from theoretical through methodological to applied work. It is subdivided into four main parts: the first focusing on the research of settlements and infrastructure, the second studies aspects of Geographic Data Mining, the third presents contributions in the field of Spatial Modelling, System Dynamics and Geosimulation, and the fourth part is dedicated to Multi-Scale Representation and Analysis. The book is valuable to those with a scholarly interest in spatial sciences, urban and spatial planning, as well as anyone interested in spatial analysis and the planning of human settlements and infrastructure. Most of the selected papers were originally presented at the “International Land Use Symposium (ILUS 2015): Trends in Spatial Analysis and Modelling of Settlements and Infrastructure” November 11-13 2015, in Dresden, Germany.