Self-Reference and Modal Logic

Self-Reference and Modal Logic PDF Author: Craig Smorynski
Publisher: Springer Science & Business Media
ISBN: 1461386012
Category : Mathematics
Languages : en
Pages : 346

Get Book Here

Book Description
It is Sunday, the 7th of September 1930. The place is Konigsberg and the occasion is a small conference on the foundations of mathematics. Arend Heyting, the foremost disciple of L. E. J. Brouwer, has spoken on intuitionism; Rudolf Carnap of the Vienna Circle has expounded on logicism; Johann (formerly Janos and in a few years to be Johnny) von Neumann has explained Hilbert's proof theory-- the so-called formalism; and Hans Hahn has just propounded his own empiricist views of mathematics. The floor is open for general discussion, in the midst of which Heyting announces his satisfaction with the meeting. For him, the relationship between formalism and intuitionism has been clarified: There need be no war between the intuitionist and the formalist. Once the formalist has successfully completed Hilbert's programme and shown "finitely" that the "idealised" mathematics objected to by Brouwer proves no new "meaningful" statements, even the intuitionist will fondly embrace the infinite. To this euphoric revelation, a shy young man cautions~ "According to the formalist conception one adjoins to the meaningful statements of mathematics transfinite (pseudo-')statements which in themselves have no meaning but only serve to make the system a well-rounded one just as in geometry one achieves a well rounded system by the introduction of points at infinity.

Self-Reference and Modal Logic

Self-Reference and Modal Logic PDF Author: Craig Smorynski
Publisher: Springer Science & Business Media
ISBN: 1461386012
Category : Mathematics
Languages : en
Pages : 346

Get Book Here

Book Description
It is Sunday, the 7th of September 1930. The place is Konigsberg and the occasion is a small conference on the foundations of mathematics. Arend Heyting, the foremost disciple of L. E. J. Brouwer, has spoken on intuitionism; Rudolf Carnap of the Vienna Circle has expounded on logicism; Johann (formerly Janos and in a few years to be Johnny) von Neumann has explained Hilbert's proof theory-- the so-called formalism; and Hans Hahn has just propounded his own empiricist views of mathematics. The floor is open for general discussion, in the midst of which Heyting announces his satisfaction with the meeting. For him, the relationship between formalism and intuitionism has been clarified: There need be no war between the intuitionist and the formalist. Once the formalist has successfully completed Hilbert's programme and shown "finitely" that the "idealised" mathematics objected to by Brouwer proves no new "meaningful" statements, even the intuitionist will fondly embrace the infinite. To this euphoric revelation, a shy young man cautions~ "According to the formalist conception one adjoins to the meaningful statements of mathematics transfinite (pseudo-')statements which in themselves have no meaning but only serve to make the system a well-rounded one just as in geometry one achieves a well rounded system by the introduction of points at infinity.

Handbook of Philosophical Logic

Handbook of Philosophical Logic PDF Author: Dov M. Gabbay
Publisher: Springer Science & Business Media
ISBN: 940170466X
Category : Philosophy
Languages : en
Pages : 348

Get Book Here

Book Description
It is with great pleasure that we are presenting to the community the second edition of this extraordinary handbook. It has been over 15 years since the publication of the first edition and there have been great changes in the landscape of philosophical logic since then. The first edition has proved invaluable to generations of students and researchers in formal philosophy and language, as well as to consumers of logic in many applied areas. The main logic article in the Encyclopaedia Britannica 1999 has described the first edition as 'the best starting point for exploring any of the topics in logic'. We are confident that the second edition will prove to be just as good! The first edition was the second handbook published for the logic commu nity. It followed the North Holland one volume Handbook of Mathematical Logic, published in 1977, edited by the late Jon Barwise. The four volume Handbook of Philosophical Logic, published 1983-1989 came at a fortunate temporal junction at the evolution of logic. This was the time when logic was gaining ground in computer science and artificial intelligence circles. These areas were under increasing commercial pressure to provide devices which help and/or replace the human in his daily activity. This pressure required the use of logic in the modelling of human activity and organisa tion on the one hand and to provide the theoretical basis for the computer program constructs on the other.

Raymond Smullyan on Self Reference

Raymond Smullyan on Self Reference PDF Author: Melvin Fitting
Publisher: Springer
ISBN: 3319687328
Category : Philosophy
Languages : en
Pages : 200

Get Book Here

Book Description
This book collects, for the first time in one volume, contributions honoring Professor Raymond Smullyan’s work on self-reference. It serves not only as a tribute to one of the great thinkers in logic, but also as a celebration of self-reference in general, to be enjoyed by all lovers of this field. Raymond Smullyan, mathematician, philosopher, musician and inventor of logic puzzles, made a lasting impact on the study of mathematical logic; accordingly, this book spans the many personalities through which Professor Smullyan operated, offering extensions and re-evaluations of his academic work on self-reference, applying self-referential logic to art and nature, and lastly, offering new puzzles designed to communicate otherwise esoteric concepts in mathematical logic, in the manner for which Professor Smullyan was so well known. This book is suitable for students, scholars and logicians who are interested in learning more about Raymond Smullyan's work and life.

Metamathematics of First-Order Arithmetic

Metamathematics of First-Order Arithmetic PDF Author: Petr Hájek
Publisher: Cambridge University Press
ISBN: 1316739457
Category : Mathematics
Languages : en
Pages : 476

Get Book Here

Book Description
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the third publication in the Perspectives in Logic series, is a much-needed monograph on the metamathematics of first-order arithmetic. The authors pay particular attention to subsystems (fragments) of Peano arithmetic and give the reader a deeper understanding of the role of the axiom schema of induction and of the phenomenon of incompleteness. The reader is only assumed to know the basics of mathematical logic, which are reviewed in the preliminaries. Part I develops parts of mathematics and logic in various fragments. Part II is devoted to incompleteness. Finally, Part III studies systems that have the induction schema restricted to bounded formulas (bounded arithmetic).

The Logic of Provability

The Logic of Provability PDF Author: George Boolos
Publisher: Cambridge University Press
ISBN: 9780521483254
Category : Mathematics
Languages : en
Pages : 318

Get Book Here

Book Description
Boolos, a pre-eminent philosopher of mathematics, investigates the relationship between provability and modal logic.

First Steps in Modal Logic

First Steps in Modal Logic PDF Author: Sally Popkorn
Publisher: Cambridge University Press
ISBN: 052146482X
Category : Mathematics
Languages : en
Pages : 340

Get Book Here

Book Description
This is a first course in propositional modal logic, suitable for mathematicians, computer scientists and philosophers. Emphasis is placed on semantic aspects, in the form of labelled transition structures, rather than on proof theory.

Handbook of Modal Logic

Handbook of Modal Logic PDF Author: Patrick Blackburn
Publisher: Elsevier
ISBN: 9780080466668
Category : Mathematics
Languages : en
Pages : 1260

Get Book Here

Book Description
The Handbook of Modal Logic contains 20 articles, which collectively introduce contemporary modal logic, survey current research, and indicate the way in which the field is developing. The articles survey the field from a wide variety of perspectives: the underling theory is explored in depth, modern computational approaches are treated, and six major applications areas of modal logic (in Mathematics, Computer Science, Artificial Intelligence, Linguistics, Game Theory, and Philosophy) are surveyed. The book contains both well-written expository articles, suitable for beginners approaching the subject for the first time, and advanced articles, which will help those already familiar with the field to deepen their expertise. Please visit: http://people.uleth.ca/~woods/RedSeriesPromo_WP/PubSLPR.html - Compact modal logic reference - Computational approaches fully discussed - Contemporary applications of modal logic covered in depth

Perspectives on the History of Mathematical Logic

Perspectives on the History of Mathematical Logic PDF Author: Thomas Drucker
Publisher: Springer Science & Business Media
ISBN: 0817647694
Category : Mathematics
Languages : en
Pages : 218

Get Book Here

Book Description
This volume offers insights into the development of mathematical logic over the last century. Arising from a special session of the history of logic at an American Mathematical Society meeting, the chapters explore technical innovations, the philosophical consequences of work during the period, and the historical and social context in which the logicians worked. The discussions herein will appeal to mathematical logicians and historians of mathematics, as well as philosophers and historians of science.

Introduction to Mathematical Logic, Fourth Edition

Introduction to Mathematical Logic, Fourth Edition PDF Author: Elliott Mendelson
Publisher: CRC Press
ISBN: 9780412808302
Category : Mathematics
Languages : en
Pages : 464

Get Book Here

Book Description
The Fourth Edition of this long-established text retains all the key features of the previous editions, covering the basic topics of a solid first course in mathematical logic. This edition includes an extensive appendix on second-order logic, a section on set theory with urlements, and a section on the logic that results when we allow models with empty domains. The text contains numerous exercises and an appendix furnishes answers to many of them. Introduction to Mathematical Logic includes: propositional logic first-order logic first-order number theory and the incompleteness and undecidability theorems of Gödel, Rosser, Church, and Tarski axiomatic set theory theory of computability The study of mathematical logic, axiomatic set theory, and computability theory provides an understanding of the fundamental assumptions and proof techniques that form basis of mathematics. Logic and computability theory have also become indispensable tools in theoretical computer science, including artificial intelligence. Introduction to Mathematical Logic covers these topics in a clear, reader-friendly style that will be valued by anyone working in computer science as well as lecturers and researchers in mathematics, philosophy, and related fields.

Introduction to Mathematical Logic

Introduction to Mathematical Logic PDF Author: Elliott Mendelson
Publisher: CRC Press
ISBN: 1584888776
Category : Computers
Languages : en
Pages : 496

Get Book Here

Book Description
Retaining all the key features of the previous editions, Introduction to Mathematical Logic, Fifth Edition explores the principal topics of mathematical logic. It covers propositional logic, first-order logic, first-order number theory, axiomatic set theory, and the theory of computability. The text also discusses the major results of Godel, Church