Self-Organization and Associative Memory

Self-Organization and Associative Memory PDF Author: Teuvo Kohonen
Publisher: Springer Science & Business Media
ISBN: 3642881637
Category : Medical
Languages : en
Pages : 325

Get Book Here

Book Description
While the present edition is bibliographically the third one of Vol. 8 of the Springer Series in Information Sciences (IS 8), the book actually stems from Vol. 17 of the series Communication and Cybernetics (CC 17), entitled Associative Memory - A System-Theoretical Approach, which appeared in 1977. That book was the first monograph on distributed associative memories, or "content-addressable memories" as they are frequently called, especially in neural-networks research. This author, however, would like to reserve the term "content-addressable memory" for certain more traditional constructs, the memory locations of which are selected by parallel search. Such devices are discussed in Vol. 1 of the Springer Series in Information Sciences, Content-Addressable Memories. This third edition of IS 8 is rather similar to the second one. Two new discussions have been added: one to the end of Chap. 5, and the other (the L VQ 2 algorithm) to the end of Chap. 7. Moreover, the convergence proof in Sect. 5.7.2 has been revised.

Self-Organization and Associative Memory

Self-Organization and Associative Memory PDF Author: Teuvo Kohonen
Publisher: Springer Science & Business Media
ISBN: 3642881637
Category : Medical
Languages : en
Pages : 325

Get Book Here

Book Description
While the present edition is bibliographically the third one of Vol. 8 of the Springer Series in Information Sciences (IS 8), the book actually stems from Vol. 17 of the series Communication and Cybernetics (CC 17), entitled Associative Memory - A System-Theoretical Approach, which appeared in 1977. That book was the first monograph on distributed associative memories, or "content-addressable memories" as they are frequently called, especially in neural-networks research. This author, however, would like to reserve the term "content-addressable memory" for certain more traditional constructs, the memory locations of which are selected by parallel search. Such devices are discussed in Vol. 1 of the Springer Series in Information Sciences, Content-Addressable Memories. This third edition of IS 8 is rather similar to the second one. Two new discussions have been added: one to the end of Chap. 5, and the other (the L VQ 2 algorithm) to the end of Chap. 7. Moreover, the convergence proof in Sect. 5.7.2 has been revised.

Self-organization and Associative Memory

Self-organization and Associative Memory PDF Author: Teuvo Kohonen
Publisher: Springer Science & Business Media
ISBN: 9783540121657
Category : Associative storage
Languages : en
Pages : 255

Get Book Here

Book Description


Self-Organizing Maps

Self-Organizing Maps PDF Author: Teuvo Kohonen
Publisher: Springer Science & Business Media
ISBN: 3642976107
Category : Science
Languages : en
Pages : 372

Get Book Here

Book Description
The book we have at hand is the fourth monograph I wrote for Springer Verlag. The previous one named "Self-Organization and Associative Mem ory" (Springer Series in Information Sciences, Volume 8) came out in 1984. Since then the self-organizing neural-network algorithms called SOM and LVQ have become very popular, as can be seen from the many works re viewed in Chap. 9. The new results obtained in the past ten years or so have warranted a new monograph. Over these years I have also answered lots of questions; they have influenced the contents of the present book. I hope it would be of some interest and help to the readers if I now first very briefly describe the various phases that led to my present SOM research, and the reasons underlying each new step. I became interested in neural networks around 1960, but could not in terrupt my graduate studies in physics. After I was appointed Professor of Electronics in 1965, it still took some years to organize teaching at the uni versity. In 1968 - 69 I was on leave at the University of Washington, and D. Gabor had just published his convolution-correlation model of autoasso ciative memory. I noticed immediately that there was something not quite right about it: the capacity was very poor and the inherent noise and crosstalk were intolerable. In 1970 I therefore sugge~ted the auto associative correlation matrix memory model, at the same time as J.A. Anderson and K. Nakano.

Competition and Cooperation in Neural Nets

Competition and Cooperation in Neural Nets PDF Author: S. Amari
Publisher: Springer Science & Business Media
ISBN: 3642464661
Category : Medical
Languages : en
Pages : 460

Get Book Here

Book Description
The human brain, wi th its hundred billion or more neurons, is both one of the most complex systems known to man and one of the most important. The last decade has seen an explosion of experimental research on the brain, but little theory of neural networks beyond the study of electrical properties of membranes and small neural circuits. Nonetheless, a number of workers in Japan, the United States and elsewhere have begun to contribute to a theory which provides techniques of mathematical analysis and computer simulation to explore properties of neural systems containing immense numbers of neurons. Recently, it has been gradually recognized that rather independent studies of the dynamics of pattern recognition, pattern format::ion, motor control, self-organization, etc. , in neural systems do in fact make use of common methods. We find that a "competition and cooperation" type of interaction plays a fundamental role in parallel information processing in the brain. The present volume brings together 23 papers presented at a U. S. -Japan Joint Seminar on "Competition and Cooperation in Neural Nets" which was designed to catalyze better integration of theory and experiment in these areas. It was held in Kyoto, Japan, February 15-19, 1982, under the joint sponsorship of the U. S. National Science Foundation and the Japan Society for the Promotion of Science. Participants included brain theorists, neurophysiologists, mathematicians, computer scientists, and physicists. There are seven papers from the U. S.

Inference and Learning from Data

Inference and Learning from Data PDF Author: Ali H. Sayed
Publisher: Cambridge University Press
ISBN: 100921828X
Category : Computers
Languages : en
Pages : 1081

Get Book Here

Book Description
Discover data-driven learning methods with the third volume of this extraordinary three-volume set.

An Introduction to Neural Networks

An Introduction to Neural Networks PDF Author: Kevin Gurney
Publisher: CRC Press
ISBN: 1482286998
Category : Computers
Languages : en
Pages : 148

Get Book Here

Book Description
Though mathematical ideas underpin the study of neural networks, the author presents the fundamentals without the full mathematical apparatus. All aspects of the field are tackled, including artificial neurons as models of their real counterparts; the geometry of network action in pattern space; gradient descent methods, including back-propagation; associative memory and Hopfield nets; and self-organization and feature maps. The traditionally difficult topic of adaptive resonance theory is clarified within a hierarchical description of its operation. The book also includes several real-world examples to provide a concrete focus. This should enhance its appeal to those involved in the design, construction and management of networks in commercial environments and who wish to improve their understanding of network simulator packages. As a comprehensive and highly accessible introduction to one of the most important topics in cognitive and computer science, this volume should interest a wide range of readers, both students and professionals, in cognitive science, psychology, computer science and electrical engineering.

Brain Organization and Memory

Brain Organization and Memory PDF Author: James L. McGaugh
Publisher: Oxford University Press
ISBN: 0195360257
Category : Psychology
Languages : en
Pages : 428

Get Book Here

Book Description
This edited volume summarizes recent findings of leading researchers investigating the brain systems that underlie memory. The book reviews recent progress in understanding forms of memory in animals and humans and the interaction of cortical and subcortical systems in the regulation of memory. Special emphasis is given to the development of neural network models that attempt to link cells to systems in the representation of memory. The book will be an invaluable source for cognitive psychologists, neuroscientists, and students interested in this active and exciting area of research.

Introduction to Neural and Cognitive Modeling

Introduction to Neural and Cognitive Modeling PDF Author: Daniel S. Levine
Publisher: Routledge
ISBN: 0429828802
Category : Psychology
Languages : en
Pages : 480

Get Book Here

Book Description
This textbook provides a general introduction to the field of neural networks. Thoroughly revised and updated from the previous editions of 1991 and 2000, the current edition concentrates on networks for modeling brain processes involved in cognitive and behavioral functions. Part one explores the philosophy of modeling and the field’s history starting from the mid-1940s, and then discusses past models of associative learning and of short-term memory that provide building blocks for more complex recent models. Part two of the book reviews recent experimental findings in cognitive neuroscience and discusses models of conditioning, categorization, category learning, vision, visual attention, sequence learning, behavioral control, decision making, reasoning, and creativity. The book presents these models both as abstract ideas and through examples and concrete data for specific brain regions. The book includes two appendices to help ground the reader: one reviewing the mathematics used in network modeling, and a second reviewing basic neuroscience at both the neuron and brain region level. The book also includes equations, practice exercises, and thought experiments.

Natural and Artificial Intelligence

Natural and Artificial Intelligence PDF Author: A. de Callataÿ
Publisher: Elsevier
ISBN: 1483297810
Category : Computers
Languages : en
Pages : 695

Get Book Here

Book Description
How does the mind work? How is data stored in the brain? How does the mental world connect with the physical world? The hybrid system developed in this book shows a radically new view on the brain. Briefly, in this model memory remains permanent by changing the homeostasis rebuilding the neuronal organelles. These transformations are approximately abstracted as all-or-none operations. Thus the computer-like neural systems become plausible biological models. This illustrated book shows how artificial animals with such brains learn invariant methods of behavior control from their repeated actions. These robots can make decisions in any circumstances and reason by analogy whenever possible.This new and expanded edition includes a prologue exploring the problems which have stopped the development of fully fledged brain models. The causes of these deadlocks are listed as potential misconceptions about brain principles, neural networks, nervous systems, robotics, programming and decision logic.

Neural Networks and Statistical Learning

Neural Networks and Statistical Learning PDF Author: Ke-Lin Du
Publisher: Springer Nature
ISBN: 1447174526
Category : Mathematics
Languages : en
Pages : 996

Get Book Here

Book Description
This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing. Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include: • multilayer perceptron; • the Hopfield network; • associative memory models;• clustering models and algorithms; • t he radial basis function network; • recurrent neural networks; • nonnegative matrix factorization; • independent component analysis; •probabilistic and Bayesian networks; and • fuzzy sets and logic. Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning.