Author: John A. Pelesko
Publisher: CRC Press
ISBN: 1584886889
Category : Science
Languages : en
Pages : 332
Book Description
Hailed as one of the key areas of nanoscience likely to shape future scientific research, self-assembly offers the most promising route to true molecular nanotechnology. Focusing on this dynamic new field, Self Assembly: The Science of Things That Put Themselves Together explores nature's self-assembly of structures, the use of it to build engineer
Self Assembly
Author: John A. Pelesko
Publisher: CRC Press
ISBN: 1584886889
Category : Science
Languages : en
Pages : 332
Book Description
Hailed as one of the key areas of nanoscience likely to shape future scientific research, self-assembly offers the most promising route to true molecular nanotechnology. Focusing on this dynamic new field, Self Assembly: The Science of Things That Put Themselves Together explores nature's self-assembly of structures, the use of it to build engineer
Publisher: CRC Press
ISBN: 1584886889
Category : Science
Languages : en
Pages : 332
Book Description
Hailed as one of the key areas of nanoscience likely to shape future scientific research, self-assembly offers the most promising route to true molecular nanotechnology. Focusing on this dynamic new field, Self Assembly: The Science of Things That Put Themselves Together explores nature's self-assembly of structures, the use of it to build engineer
Self-Assembled Structures
Author: Jingcheng Hao
Publisher: CRC Press
ISBN: 1439840849
Category : Science
Languages : en
Pages : 250
Book Description
Self-assembly is a process in which a disordered system forms an organized structure without external direction. Examples include the formation of molecular crystals, lipid bilayers, and polymer brushes. This book reviews the fabrication and use of various self-assembled materials. In particular, the author pays special attention to self-assembled structures when in solution and in contact with surfaces, as such interactions can have a pronounced impact on their properties and applications. The text covers bulk solution and surfaces, assembled structures, colloid particles, polymer capsules, carbon nanotubes, as well as layer-by-layer assembly techniques.
Publisher: CRC Press
ISBN: 1439840849
Category : Science
Languages : en
Pages : 250
Book Description
Self-assembly is a process in which a disordered system forms an organized structure without external direction. Examples include the formation of molecular crystals, lipid bilayers, and polymer brushes. This book reviews the fabrication and use of various self-assembled materials. In particular, the author pays special attention to self-assembled structures when in solution and in contact with surfaces, as such interactions can have a pronounced impact on their properties and applications. The text covers bulk solution and surfaces, assembled structures, colloid particles, polymer capsules, carbon nanotubes, as well as layer-by-layer assembly techniques.
Self-assembling Biomaterials
Author: Helena S. Azevedo
Publisher: Woodhead Publishing
ISBN: 0081020120
Category : Technology & Engineering
Languages : en
Pages : 614
Book Description
Self-assembling biomaterials: molecular design, characterization and application in biology and medicine provides a comprehensive coverage on an emerging area of biomaterials science, spanning from conceptual designs to advanced characterization tools and applications of self-assembling biomaterials, and compiling the recent developments in the field. Molecular self-assembly, the autonomous organization of molecules, is ubiquitous in living organisms and intrinsic to biological structures and function. Not surprisingly, the exciting field of engineering artificial self-assembling biomaterials often finds inspiration in Biology. More important, materials that self-assemble speak the language of life and can be designed to seamlessly integrate with the biological environment, offering unique engineering opportunities in bionanotechnology. The book is divided in five parts, comprising design of molecular building blocks for self-assembly; exclusive features of self-assembling biomaterials; specific methods and techniques to predict, investigate and characterize self-assembly and formed assemblies; different approaches for controlling self-assembly across multiple length scales and the nano/micro/macroscopic properties of biomaterials; diverse range of applications in biomedicine, including drug delivery, theranostics, cell culture and tissue regeneration. Written by researchers working in self-assembling biomaterials, it addresses a specific need within the Biomaterials scientific community. - Explores both theoretical and practical aspects of self-assembly in biomaterials - Includes a dedicated section on characterization techniques, specific for self-assembling biomaterials - Examines the use of dynamic self-assembling biomaterials
Publisher: Woodhead Publishing
ISBN: 0081020120
Category : Technology & Engineering
Languages : en
Pages : 614
Book Description
Self-assembling biomaterials: molecular design, characterization and application in biology and medicine provides a comprehensive coverage on an emerging area of biomaterials science, spanning from conceptual designs to advanced characterization tools and applications of self-assembling biomaterials, and compiling the recent developments in the field. Molecular self-assembly, the autonomous organization of molecules, is ubiquitous in living organisms and intrinsic to biological structures and function. Not surprisingly, the exciting field of engineering artificial self-assembling biomaterials often finds inspiration in Biology. More important, materials that self-assemble speak the language of life and can be designed to seamlessly integrate with the biological environment, offering unique engineering opportunities in bionanotechnology. The book is divided in five parts, comprising design of molecular building blocks for self-assembly; exclusive features of self-assembling biomaterials; specific methods and techniques to predict, investigate and characterize self-assembly and formed assemblies; different approaches for controlling self-assembly across multiple length scales and the nano/micro/macroscopic properties of biomaterials; diverse range of applications in biomedicine, including drug delivery, theranostics, cell culture and tissue regeneration. Written by researchers working in self-assembling biomaterials, it addresses a specific need within the Biomaterials scientific community. - Explores both theoretical and practical aspects of self-assembly in biomaterials - Includes a dedicated section on characterization techniques, specific for self-assembling biomaterials - Examines the use of dynamic self-assembling biomaterials
Self Assembly in Supramolecular Systems
Author: Ian M Atkinson
Publisher: Royal Society of Chemistry
ISBN: 1847551866
Category : Science
Languages : en
Pages : 235
Book Description
Molecular self-assembly is a widespread phenomenon in both chemistry and biochemistry. Yet it was not until the rise of supramolecular chemistry that attention has increasingly been given to the designed self-assembly of a variety of synthetic molecules and ions. To a large extent, success in this area has reflected knowledge gained from nature. However, an increased awareness of the latent steric and electronic information implanted in individual molecular components has also contributed to this success. Whilst not yet approaching the sophistication of biological assemblies, synthetic systems of increasing subtlety and considerable aesthetic appeal have been created. Self-Assembly in Supramolecular Systems surveys highlights of the progress made in the creation of discrete synthetic assemblies and provides a foundation for new workers in the area, as well as background reading for experienced supramolecular chemists.
Publisher: Royal Society of Chemistry
ISBN: 1847551866
Category : Science
Languages : en
Pages : 235
Book Description
Molecular self-assembly is a widespread phenomenon in both chemistry and biochemistry. Yet it was not until the rise of supramolecular chemistry that attention has increasingly been given to the designed self-assembly of a variety of synthetic molecules and ions. To a large extent, success in this area has reflected knowledge gained from nature. However, an increased awareness of the latent steric and electronic information implanted in individual molecular components has also contributed to this success. Whilst not yet approaching the sophistication of biological assemblies, synthetic systems of increasing subtlety and considerable aesthetic appeal have been created. Self-Assembly in Supramolecular Systems surveys highlights of the progress made in the creation of discrete synthetic assemblies and provides a foundation for new workers in the area, as well as background reading for experienced supramolecular chemists.
Self-Assembled Nanostructures
Author: Jin Zhang
Publisher: Springer Science & Business Media
ISBN: 0306479419
Category : Science
Languages : en
Pages : 327
Book Description
Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.
Publisher: Springer Science & Business Media
ISBN: 0306479419
Category : Science
Languages : en
Pages : 327
Book Description
Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.
Materials Nanoarchitectonics
Author: Katsuhiko Ariga
Publisher: Elsevier
ISBN: 0323994733
Category : Technology & Engineering
Languages : en
Pages : 648
Book Description
Materials Nanoarchitectonics: From Integrated Molecular Systems to Advanced Devices provides the latest information on the design and molecular manipulation of self-organized hierarchically structured systems using tailor-made nanoscale materials as structural and functional units. The book is organized into three main sections that focus on molecular design of building blocks and hybrid materials, formation of nanostructures, and applications and devices. Bringing together emerging materials, synthetic aspects, nanostructure strategies, and applications, the book aims to support further progress, by offering different perspectives and a strong interdisciplinary approach to this rapidly growing area of innovation. This is an extremely valuable resource for researchers, advanced students, and scientists in industry, with an interest in nanoarchitectonics, nanostructures, and nanomaterials, or across the areas of nanotechnology, chemistry, surface science, polymer science, electrical engineering, physics, chemical engineering, and materials science. - Offers a nanoarchitectonic perspective on emerging fields, such as metal-organic frameworks, porous polymer materials, or biomimetic nanostructures - Discusses different approaches to utilizing "soft chemistry" as a source for hierarchically organized materials - Offers an interdisciplinary approach to the design and construction of integrated chemical nano systems - Discusses novel approaches towards the creation of complex multiscale architectures
Publisher: Elsevier
ISBN: 0323994733
Category : Technology & Engineering
Languages : en
Pages : 648
Book Description
Materials Nanoarchitectonics: From Integrated Molecular Systems to Advanced Devices provides the latest information on the design and molecular manipulation of self-organized hierarchically structured systems using tailor-made nanoscale materials as structural and functional units. The book is organized into three main sections that focus on molecular design of building blocks and hybrid materials, formation of nanostructures, and applications and devices. Bringing together emerging materials, synthetic aspects, nanostructure strategies, and applications, the book aims to support further progress, by offering different perspectives and a strong interdisciplinary approach to this rapidly growing area of innovation. This is an extremely valuable resource for researchers, advanced students, and scientists in industry, with an interest in nanoarchitectonics, nanostructures, and nanomaterials, or across the areas of nanotechnology, chemistry, surface science, polymer science, electrical engineering, physics, chemical engineering, and materials science. - Offers a nanoarchitectonic perspective on emerging fields, such as metal-organic frameworks, porous polymer materials, or biomimetic nanostructures - Discusses different approaches to utilizing "soft chemistry" as a source for hierarchically organized materials - Offers an interdisciplinary approach to the design and construction of integrated chemical nano systems - Discusses novel approaches towards the creation of complex multiscale architectures
The Self-Assembling Brain
Author: Peter Robin Hiesinger
Publisher: Princeton University Press
ISBN: 0691241694
Category : Computers
Languages : en
Pages : 384
Book Description
"In this book, Peter Robin Hiesinger explores historical and contemporary attempts to understand the information needed to make biological and artificial neural networks. Developmental neurobiologists and computer scientists with an interest in artificial intelligence - driven by the promise and resources of biomedical research on the one hand, and by the promise and advances of computer technology on the other - are trying to understand the fundamental principles that guide the generation of an intelligent system. Yet, though researchers in these disciplines share a common interest, their perspectives and approaches are often quite different. The book makes the case that "the information problem" underlies both fields, driving the questions that are driving forward the frontiers, and aims to encourage cross-disciplinary communication and understanding, to help both fields make progress. The questions that challenge researchers in these fields include the following. How does genetic information unfold during the years-long process of human brain development, and can this be a short-cut to create human-level artificial intelligence? Is the biological brain just messy hardware that can be improved upon by running learning algorithms in computers? Can artificial intelligence bypass evolutionary programming of "grown" networks? These questions are tightly linked, and answering them requires an understanding of how information unfolds algorithmically to generate functional neural networks. Via a series of closely linked "discussions" (fictional dialogues between researchers in different disciplines) and pedagogical "seminars," the author explores the different challenges facing researchers working on neural networks, their different perspectives and approaches, as well as the common ground and understanding to be found amongst those sharing an interest in the development of biological brains and artificial intelligent systems"--
Publisher: Princeton University Press
ISBN: 0691241694
Category : Computers
Languages : en
Pages : 384
Book Description
"In this book, Peter Robin Hiesinger explores historical and contemporary attempts to understand the information needed to make biological and artificial neural networks. Developmental neurobiologists and computer scientists with an interest in artificial intelligence - driven by the promise and resources of biomedical research on the one hand, and by the promise and advances of computer technology on the other - are trying to understand the fundamental principles that guide the generation of an intelligent system. Yet, though researchers in these disciplines share a common interest, their perspectives and approaches are often quite different. The book makes the case that "the information problem" underlies both fields, driving the questions that are driving forward the frontiers, and aims to encourage cross-disciplinary communication and understanding, to help both fields make progress. The questions that challenge researchers in these fields include the following. How does genetic information unfold during the years-long process of human brain development, and can this be a short-cut to create human-level artificial intelligence? Is the biological brain just messy hardware that can be improved upon by running learning algorithms in computers? Can artificial intelligence bypass evolutionary programming of "grown" networks? These questions are tightly linked, and answering them requires an understanding of how information unfolds algorithmically to generate functional neural networks. Via a series of closely linked "discussions" (fictional dialogues between researchers in different disciplines) and pedagogical "seminars," the author explores the different challenges facing researchers working on neural networks, their different perspectives and approaches, as well as the common ground and understanding to be found amongst those sharing an interest in the development of biological brains and artificial intelligent systems"--
Mechanical Self-Assembly
Author: Xi Chen
Publisher: Springer Science & Business Media
ISBN: 1461445620
Category : Technology & Engineering
Languages : en
Pages : 213
Book Description
Mechanical Self-Assembly: Science and Applications introduces a novel category of self-assembly driven by mechanical forces. This book discusses self-assembly in various types of small material structures including thin films, surfaces, and micro- and nano-wires, as well as the practice's potential application in micro and nanoelectronics, MEMS/NEMS, and biomedical engineering. The mechanical self-assembly process is inherently quick, simple, and cost-effective, as well as accessible to a large number of materials, such as curved surfaces for forming three-dimensional small structures. Mechanical self-assembly is complementary to, and sometimes offer advantages over, the traditional micro- and nano-fabrication.
Publisher: Springer Science & Business Media
ISBN: 1461445620
Category : Technology & Engineering
Languages : en
Pages : 213
Book Description
Mechanical Self-Assembly: Science and Applications introduces a novel category of self-assembly driven by mechanical forces. This book discusses self-assembly in various types of small material structures including thin films, surfaces, and micro- and nano-wires, as well as the practice's potential application in micro and nanoelectronics, MEMS/NEMS, and biomedical engineering. The mechanical self-assembly process is inherently quick, simple, and cost-effective, as well as accessible to a large number of materials, such as curved surfaces for forming three-dimensional small structures. Mechanical self-assembly is complementary to, and sometimes offer advantages over, the traditional micro- and nano-fabrication.
Protein Self-Assembly
Author: Jennifer J. McManus
Publisher: Humana
ISBN: 9781493996803
Category : Science
Languages : en
Pages : 266
Book Description
This volume explores experimental and computational approaches to measuring the most widely studied protein assemblies, including condensed liquid phases, aggregates, and crystals. The chapters in this book are organized into three parts: Part One looks at the techniques used to measure protein-protein interactions and equilibrium protein phases in dilute and concentrated protein solutions; Part Two describes methods to measure kinetics of aggregation and to characterize the assembled state; and Part Three details several different computational approaches that are currently used to help researchers understand protein self-assembly. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and cutting-edge, Protein Self-Assembly: Methods and Protocols is a valuable resource for researchers who are interested in learning more about this developing field.
Publisher: Humana
ISBN: 9781493996803
Category : Science
Languages : en
Pages : 266
Book Description
This volume explores experimental and computational approaches to measuring the most widely studied protein assemblies, including condensed liquid phases, aggregates, and crystals. The chapters in this book are organized into three parts: Part One looks at the techniques used to measure protein-protein interactions and equilibrium protein phases in dilute and concentrated protein solutions; Part Two describes methods to measure kinetics of aggregation and to characterize the assembled state; and Part Three details several different computational approaches that are currently used to help researchers understand protein self-assembly. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and cutting-edge, Protein Self-Assembly: Methods and Protocols is a valuable resource for researchers who are interested in learning more about this developing field.
Soft Machines
Author: Richard Anthony Lewis Jones
Publisher: Oxford University Press
ISBN: 0198528558
Category : Science
Languages : en
Pages : 238
Book Description
Enthusiasts look forward to a time when tiny machines reassemble matter and process information but is their vision realistic? 'Soft Machines' explains why the nanoworld is so different to the macro-world that we are all familar with and shows how it has more in common with biology than conventional engineering.
Publisher: Oxford University Press
ISBN: 0198528558
Category : Science
Languages : en
Pages : 238
Book Description
Enthusiasts look forward to a time when tiny machines reassemble matter and process information but is their vision realistic? 'Soft Machines' explains why the nanoworld is so different to the macro-world that we are all familar with and shows how it has more in common with biology than conventional engineering.