Seismic Response of Base Isolated Buildings Considering Pounding to Moat Walls

Seismic Response of Base Isolated Buildings Considering Pounding to Moat Walls PDF Author: Armin Masroor Shalmani
Publisher:
ISBN:
Category :
Languages : en
Pages : 254

Get Book Here

Book Description
Seismic isolation offers a simple and direct opportunity to control or even eliminate damage to structures subjected to ground shaking by simultaneously reducing deformations and acceleration demands. A base isolation system decouples the superstructure from the ground resulting in elongation of fundamental period of the structure and reducing the accelerations transferred to superstructure during ground shaking. However, increasing the fundamental period of the structure is mostly accompanied by increased displacement demands. In base isolated structures, this large displacement is concentrated at base level where seismic isolation devices are installed and designed to handle these large deformations without damage. A typical base isolated basement design requires a space in which the building is free to move sideways without hitting the surrounding structure. This space is commonly referred to as the "moat". Structural design codes such as ASCE 7-05 that regulate the design of buildings incorporating seismic base isolation systems require the minimum moat wall clearance distance equal to the maximum displacement at the base of the structure under the Maximum Considered Earthquake (MCE), although the superstructure is designed for design basis earthquake (DBE) level. Despite the cautious regulation for moat wall gap distance, pounding of base isolated buildings to moat walls has been reported in previous earthquakes. In conventional structures, the pounding problem between adjacent structures of buildings and highway bridges has been a major cause of seismic damage, even collapse, during earthquakes in the past several decades. Current design specifications may not adequately account for the large forces generated during impact in base isolated buildings. This study investigates the pounding phenomenon in base isolated buildings from both experimental and analytical perspectives by conducting shake table pounding experiments, developing effective models for impact to moat walls and evaluating the adequacy of code specifications for the gap distance of moat walls. A series of prototype base isolated moment and braced buildings designed by professional engineers for the purpose of this project is presented and one of the models was selected for a quarter scale shake table test with moat walls. The pounding experiments indicate that the contact forces generated during pounding can induce yielding in the superstructure and amplify the response acceleration at all stories of the building. The response amplification and damage depends on the gap distance, moat wall properties, and impact velocity. A detailed finite element model of the test setup is developed in OpenSees. An analytical study on the dynamic behavior of the moat walls resulted in proposing a new impact element. Numerical simulation using the proposed impact element compares well with experimental results. A series of collapse studies using the Methodology in FEMA P695 was conducted for both prototype models at various gap distances. The collapse probability of base isolated models used in this study and the effect of moat wall gap distance on the probability of collapse for base isolated structures is investigated. These studies verify that pounding to moat walls at the required gap distance by ASCE7-05 result in acceptable probability of collapse for the flexible and ductile moment frame models examined. However, the braced frame shows a notable drop in collapse margin ratio because of pounding to moat wall at the required gap distance and requires increasing the gap distance by 17%. to have an acceptable collapse probability.

Seismic Response of Base Isolated Buildings Considering Pounding to Moat Walls

Seismic Response of Base Isolated Buildings Considering Pounding to Moat Walls PDF Author: Armin Masroor Shalmani
Publisher:
ISBN:
Category :
Languages : en
Pages : 254

Get Book Here

Book Description
Seismic isolation offers a simple and direct opportunity to control or even eliminate damage to structures subjected to ground shaking by simultaneously reducing deformations and acceleration demands. A base isolation system decouples the superstructure from the ground resulting in elongation of fundamental period of the structure and reducing the accelerations transferred to superstructure during ground shaking. However, increasing the fundamental period of the structure is mostly accompanied by increased displacement demands. In base isolated structures, this large displacement is concentrated at base level where seismic isolation devices are installed and designed to handle these large deformations without damage. A typical base isolated basement design requires a space in which the building is free to move sideways without hitting the surrounding structure. This space is commonly referred to as the "moat". Structural design codes such as ASCE 7-05 that regulate the design of buildings incorporating seismic base isolation systems require the minimum moat wall clearance distance equal to the maximum displacement at the base of the structure under the Maximum Considered Earthquake (MCE), although the superstructure is designed for design basis earthquake (DBE) level. Despite the cautious regulation for moat wall gap distance, pounding of base isolated buildings to moat walls has been reported in previous earthquakes. In conventional structures, the pounding problem between adjacent structures of buildings and highway bridges has been a major cause of seismic damage, even collapse, during earthquakes in the past several decades. Current design specifications may not adequately account for the large forces generated during impact in base isolated buildings. This study investigates the pounding phenomenon in base isolated buildings from both experimental and analytical perspectives by conducting shake table pounding experiments, developing effective models for impact to moat walls and evaluating the adequacy of code specifications for the gap distance of moat walls. A series of prototype base isolated moment and braced buildings designed by professional engineers for the purpose of this project is presented and one of the models was selected for a quarter scale shake table test with moat walls. The pounding experiments indicate that the contact forces generated during pounding can induce yielding in the superstructure and amplify the response acceleration at all stories of the building. The response amplification and damage depends on the gap distance, moat wall properties, and impact velocity. A detailed finite element model of the test setup is developed in OpenSees. An analytical study on the dynamic behavior of the moat walls resulted in proposing a new impact element. Numerical simulation using the proposed impact element compares well with experimental results. A series of collapse studies using the Methodology in FEMA P695 was conducted for both prototype models at various gap distances. The collapse probability of base isolated models used in this study and the effect of moat wall gap distance on the probability of collapse for base isolated structures is investigated. These studies verify that pounding to moat walls at the required gap distance by ASCE7-05 result in acceptable probability of collapse for the flexible and ductile moment frame models examined. However, the braced frame shows a notable drop in collapse margin ratio because of pounding to moat wall at the required gap distance and requires increasing the gap distance by 17%. to have an acceptable collapse probability.

Response Control and Seismic Isolation of Buildings

Response Control and Seismic Isolation of Buildings PDF Author: Masahiko Higashino
Publisher: Routledge
ISBN: 113422480X
Category : Business & Economics
Languages : en
Pages : 414

Get Book Here

Book Description
This state of the art report from an international task group (TG44) of CIB, the International Council of Building Research Organizations, presents a highly authoritative guide to the application of innovative technologies on response control and seismic isolation of buildings to practice worldwide. Many countries and cities are located in earthquake-prone areas making effective seismic design a major issue in structural engineering. Reassuringly, structural response control and seismic isolation have advanced remarkably in recent years following numerous studies internationally. Several major conferences have been held and reports have been written but little has been issued on the application of the technologies to good structural engineering practice. Plugging that gap, Response Control and Seismic Isolation of Buildings presents researchers in structural engineering (dynamics) and construction management with up-to-date applications of the latest technologies.

Seismic Response of Base-isolated Building

Seismic Response of Base-isolated Building PDF Author: Chuan Chong Ng
Publisher:
ISBN:
Category : Buildings
Languages : en
Pages :

Get Book Here

Book Description


Earthquake-Resistant Design with Rubber

Earthquake-Resistant Design with Rubber PDF Author: James M. Kelly
Publisher: Springer Science & Business Media
ISBN: 1447109716
Category : Technology & Engineering
Languages : en
Pages : 246

Get Book Here

Book Description
Base isolation technology offers a cost-effective and reliable strategy for mitigating seismic damage to structures. The effectiveness of this new technology has been demonstrated not only in laboratory research, but also in the actual response of base-isolated buildings during earthquakes. Increasingly, new and existing buildings in earthquake-prone regions throughout the world are making use of this innovative strategy. In this expanded and updated edition, the design methods and guidelines associated with seismic isolation are detailed. The main focus of the book is on isolation systems that use a damped natural rubber. Topics covered include coupled lateral-torsional response, the behavior of multilayer bearings under compression and bending, and the buckling behavior of elastomeric bearings. Also featured is a section covering the recent changes in building code requirements.

Estimating the Seismic Response of Base-isolated Buildings Including Torsion, Rocking, and Axial-load Effects

Estimating the Seismic Response of Base-isolated Buildings Including Torsion, Rocking, and Axial-load Effects PDF Author: Keri Lynn Ryan
Publisher:
ISBN:
Category : Axial loads
Languages : en
Pages : 506

Get Book Here

Book Description


Design of Seismic Isolated Structures

Design of Seismic Isolated Structures PDF Author: Farzad Naeim
Publisher: John Wiley & Sons
ISBN: 9780471149217
Category : Technology & Engineering
Languages : en
Pages : 308

Get Book Here

Book Description
Um die Auswirkungen von Erdbeben auf Gebäude, Brücken und andere empfindliche Konstruktionen zu mildern, wurden im Laufe der Jahre zahlreiche Technologien entwickelt. Eine der neueren hiervon ist die seismische Isolation: Sie beinhaltet den Einbau von Mechanismen, die das Gebäude von den Bewegungen des Untergrunds entkoppeln. Der Erfolg dieser Technik übertrifft den aller vorher bekannten Verfahren - ein Grund für Ingenieure und Architekten, sich genauer zu informieren. Dazu sei dieses Buch empfohlen. (04/99)

Comparison of Seismic Response of Ordinary and Base-isolated Structures

Comparison of Seismic Response of Ordinary and Base-isolated Structures PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Get Book Here

Book Description
Seismic isolation is growing rapidly worldwide as a cost-effective and reliable design strategy for a wide range of critical and important facilities (e.g., hospitals, computer centers, etc.) Shimizu Corporation of Japan has a test facility at Tohoku University in Sendai, Japan. The test facility was constructed in 1986 and has two buildings: one is base isolated and the other is conventionally founded. The buildings are full-size, three-story reinforced concrete structures. The dimensions and construction of the superstructures are identical. For the past several years, Shimizu Corporation has installed a number of different isolation systems in the isolated building at the test facility to study the response of base isolation systems to actual earthquake motions. Argonne National Laboratory (ANL) has been deeply involved in the development of seismic isolation for use in nuclear facilities for the past decade. Using the funding and direction of the US Department of Energy (USDOE), ANL has been developing methodology needed to evaluate the usefulness and effectiveness of seismic isolation for advanced liquid metal-cooled reactors (LMRs). This paper compares the seismic responses of ordinary and base-isolated buildings. Earthquake records of significant importance from April 1989 to September 1991, after the installation of bearings have been analyzed. Numerical simulations of the building responses have been performed and correlated with earthquake observation data. It is hoped that the results of this study will provide guidelines for the future use of isolator bearings for mitigation of earthquake damages.

Seismic Response of Base-isolated Buildings Using a Viscoelastic Model

Seismic Response of Base-isolated Buildings Using a Viscoelastic Model PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Get Book Here

Book Description
Due to recent developments in elastomer technology, seismic isolation using elastomer bearings is rapidly gaining acceptance as a design tool to enhance structural seismic margins and to protect people and equipment from earthquake damage. With proper design of isolators, the fundamental frequency of the structure can be reduced to a value that is lower than the dominant frequencies of earthquake ground motions. The other feature of an isolation system is that it can provide a mechanism for energy dissipation. In the USA, the use of seismic base-isolation has become an alternate strategy for advanced Liquid Metal-cooled Reactors (LMRs). ANL has been deeply involved in the development and implementation of seismic isolation for use in both nuclear facilities and civil structures for the past decade. Shimizu Corporation of Japan has a test facility at Tohoku University in Sendai, Japan. The test facility has two buildings: one is base isolated and the other is conventionally founded. The buildings are full-size, three-story reinforced concrete structures. The dimensions and construction of the superstructures are identical. They were built side by side in a seismically active area. In 1988, the ANL/Shimizu Joint Program was established to study the differences in behavior of base-isolated and ordinarily founded structures when subjected to earthquake loading. A more comprehensive description of this joint program is presented in a companion paper (Wang et al. 1993). With the increased use of elastomeric polymers in industrial applications such as isolation bearings, the importance of constitutive modeling of viscoelastic materials is more and more pronounced. A realistic representation of material behavior is essential for computer simulations to replicate the response observed in experiments.

Seismic Response of a Base-isolated Building with High Damping, Low Shear Modulus Elastomeric Bearings

Seismic Response of a Base-isolated Building with High Damping, Low Shear Modulus Elastomeric Bearings PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Get Book Here

Book Description
This paper deals with an investigation of seismic responses of a base-isolated building subjected to actual earthquakes. The isolation system consists of six medium shape factor, high damping, low shear modulus bearings designed by ANL and manufactured in the United Kingdom. The objective is two-fold: (1) to study the effectiveness of the isolated bearings through responses of the test building under actual earthquakes, and (2) to validate the 3-D SISEC (Seismic Isolation System Evaluation Code) program. Results obtained from the earthquake observations indicate that the advantage of the base-isolation system in mitigating the acceleration of the superstructure is very pronounced. For earthquakes {number_sign}42 and {number_sign}44, the accelerations at the roof level of the isolated building are only 20% to 30% of the ordinary building accelerations. Also, for both ordinary and base-isolated buildings the computed accelerations agree reasonably well with those recorded.

Earthquake-Induced Structural Pounding

Earthquake-Induced Structural Pounding PDF Author: Robert Jankowski
Publisher: Springer
ISBN: 3319163248
Category : Science
Languages : en
Pages : 168

Get Book Here

Book Description
This books analyzes different approaches to modeling earthquake-induced structural pounding and shows the results of the studies on collisions between buildings and between bridge segments during ground motions. Aspects related to the mitigation of pounding effects as well as the design of structures prone to pounding are also discussed. Earthquake-induced structural pounding between insufficiently separated buildings, and between bridge segments, has been repeatedly observed during ground motions. The reports after earthquakes indicate that it may result in limited local damage in the case of moderate seismic events, or in considerable destruction or even the collapse of colliding structures during severe ground motions. Pounding in buildings is usually caused by the differences in dynamic properties between structures, which make them vibrate out-of-phase under seismic excitation. In contrast, in the case of longer bridge structures, it is more often the seismic wave propagation effect that induces collisions between superstructure segments during earthquakes.