Author: Andrei Marshakov
Publisher: World Scientific
ISBN: 9789810236366
Category : Science
Languages : en
Pages : 268
Book Description
In the past few decades many attempts have been made to search for a consistent formulation of quantum field theory beyond perturbation theory. One of the most interesting examples is the Seiberg-Witten ansatz for the N=2 SUSY supersymmetric Yang-Mills gauge theories in four dimensions. The aim of this book is to present in a clear form the main ideas of the relation between the exact solutions to the supersymmetric (SUSY) Yang-Mills theories and integrable systems. This relation is a beautiful example of reformulation of close-to-realistic physical theory in terms widely known in mathematical physics ? systems of integrable nonlinear differential equations and their algebro-geometric solutions.First, the book reviews what is known about the physical problem: the construction of low-energy effective actions for the N=2 Yang-Mills theories from the traditional viewpoint of quantum field theory. Then the necessary background information from the theory of integrable systems is presented. In particular the author considers the definition of the algebro-geometric solutions to integrable systems in terms of complex curves or Riemann surfaces and the generating meromorphic 1-form. These definitions are illustrated in detail on the basic example of the periodic Toda chain.Several ?toy-model? examples of string theory solutions where the structures of integrable systems appear are briefly discussed. Then the author proceeds to the Seiberg-Witten solutions and show that they are indeed defined by the same data as finite-gap solutions to integrable systems. The complete formulation requires the introduction of certain deformations of the finite-gap solutions described in terms of quasiclassical or Whitham hierarchies. The explicit differential equations and direct computations of the prepotential of the effective theory are presented and compared when possible with the well-known computations from supersymmetric quantum gauge theories.Finally, the book discusses the properties of the exact solutions to SUSY Yang-Mills theories and their relation to integrable systems in the general context of the modern approach to nonperturbative string or M-theory.
Seiberg-Witten Theory and Integrable Systems
Author: Andrei Marshakov
Publisher: World Scientific
ISBN: 9789810236366
Category : Science
Languages : en
Pages : 268
Book Description
In the past few decades many attempts have been made to search for a consistent formulation of quantum field theory beyond perturbation theory. One of the most interesting examples is the Seiberg-Witten ansatz for the N=2 SUSY supersymmetric Yang-Mills gauge theories in four dimensions. The aim of this book is to present in a clear form the main ideas of the relation between the exact solutions to the supersymmetric (SUSY) Yang-Mills theories and integrable systems. This relation is a beautiful example of reformulation of close-to-realistic physical theory in terms widely known in mathematical physics ? systems of integrable nonlinear differential equations and their algebro-geometric solutions.First, the book reviews what is known about the physical problem: the construction of low-energy effective actions for the N=2 Yang-Mills theories from the traditional viewpoint of quantum field theory. Then the necessary background information from the theory of integrable systems is presented. In particular the author considers the definition of the algebro-geometric solutions to integrable systems in terms of complex curves or Riemann surfaces and the generating meromorphic 1-form. These definitions are illustrated in detail on the basic example of the periodic Toda chain.Several ?toy-model? examples of string theory solutions where the structures of integrable systems appear are briefly discussed. Then the author proceeds to the Seiberg-Witten solutions and show that they are indeed defined by the same data as finite-gap solutions to integrable systems. The complete formulation requires the introduction of certain deformations of the finite-gap solutions described in terms of quasiclassical or Whitham hierarchies. The explicit differential equations and direct computations of the prepotential of the effective theory are presented and compared when possible with the well-known computations from supersymmetric quantum gauge theories.Finally, the book discusses the properties of the exact solutions to SUSY Yang-Mills theories and their relation to integrable systems in the general context of the modern approach to nonperturbative string or M-theory.
Publisher: World Scientific
ISBN: 9789810236366
Category : Science
Languages : en
Pages : 268
Book Description
In the past few decades many attempts have been made to search for a consistent formulation of quantum field theory beyond perturbation theory. One of the most interesting examples is the Seiberg-Witten ansatz for the N=2 SUSY supersymmetric Yang-Mills gauge theories in four dimensions. The aim of this book is to present in a clear form the main ideas of the relation between the exact solutions to the supersymmetric (SUSY) Yang-Mills theories and integrable systems. This relation is a beautiful example of reformulation of close-to-realistic physical theory in terms widely known in mathematical physics ? systems of integrable nonlinear differential equations and their algebro-geometric solutions.First, the book reviews what is known about the physical problem: the construction of low-energy effective actions for the N=2 Yang-Mills theories from the traditional viewpoint of quantum field theory. Then the necessary background information from the theory of integrable systems is presented. In particular the author considers the definition of the algebro-geometric solutions to integrable systems in terms of complex curves or Riemann surfaces and the generating meromorphic 1-form. These definitions are illustrated in detail on the basic example of the periodic Toda chain.Several ?toy-model? examples of string theory solutions where the structures of integrable systems appear are briefly discussed. Then the author proceeds to the Seiberg-Witten solutions and show that they are indeed defined by the same data as finite-gap solutions to integrable systems. The complete formulation requires the introduction of certain deformations of the finite-gap solutions described in terms of quasiclassical or Whitham hierarchies. The explicit differential equations and direct computations of the prepotential of the effective theory are presented and compared when possible with the well-known computations from supersymmetric quantum gauge theories.Finally, the book discusses the properties of the exact solutions to SUSY Yang-Mills theories and their relation to integrable systems in the general context of the modern approach to nonperturbative string or M-theory.
Seiberg-witten Theory And The Integrable Systems
Author: Andrei Marshakov
Publisher: World Scientific
ISBN: 9814495573
Category : Science
Languages : en
Pages : 259
Book Description
In the past few decades many attempts have been made to search for a consistent formulation of quantum field theory beyond perturbation theory. One of the most interesting examples is the Seiberg-Witten ansatz for the N=2 SUSY supersymmetric Yang-Mills gauge theories in four dimensions. The aim of this book is to present in a clear form the main ideas of the relation between the exact solutions to the supersymmetric (SUSY) Yang-Mills theories and integrable systems. This relation is a beautiful example of reformulation of close-to-realistic physical theory in terms widely known in mathematical physics — systems of integrable nonlinear differential equations and their algebro-geometric solutions.First, the book reviews what is known about the physical problem: the construction of low-energy effective actions for the N=2 Yang-Mills theories from the traditional viewpoint of quantum field theory. Then the necessary background information from the theory of integrable systems is presented. In particular the author considers the definition of the algebro-geometric solutions to integrable systems in terms of complex curves or Riemann surfaces and the generating meromorphic 1-form. These definitions are illustrated in detail on the basic example of the periodic Toda chain.Several “toy-model” examples of string theory solutions where the structures of integrable systems appear are briefly discussed. Then the author proceeds to the Seiberg-Witten solutions and show that they are indeed defined by the same data as finite-gap solutions to integrable systems. The complete formulation requires the introduction of certain deformations of the finite-gap solutions described in terms of quasiclassical or Whitham hierarchies. The explicit differential equations and direct computations of the prepotential of the effective theory are presented and compared when possible with the well-known computations from supersymmetric quantum gauge theories.Finally, the book discusses the properties of the exact solutions to SUSY Yang-Mills theories and their relation to integrable systems in the general context of the modern approach to nonperturbative string or M-theory.
Publisher: World Scientific
ISBN: 9814495573
Category : Science
Languages : en
Pages : 259
Book Description
In the past few decades many attempts have been made to search for a consistent formulation of quantum field theory beyond perturbation theory. One of the most interesting examples is the Seiberg-Witten ansatz for the N=2 SUSY supersymmetric Yang-Mills gauge theories in four dimensions. The aim of this book is to present in a clear form the main ideas of the relation between the exact solutions to the supersymmetric (SUSY) Yang-Mills theories and integrable systems. This relation is a beautiful example of reformulation of close-to-realistic physical theory in terms widely known in mathematical physics — systems of integrable nonlinear differential equations and their algebro-geometric solutions.First, the book reviews what is known about the physical problem: the construction of low-energy effective actions for the N=2 Yang-Mills theories from the traditional viewpoint of quantum field theory. Then the necessary background information from the theory of integrable systems is presented. In particular the author considers the definition of the algebro-geometric solutions to integrable systems in terms of complex curves or Riemann surfaces and the generating meromorphic 1-form. These definitions are illustrated in detail on the basic example of the periodic Toda chain.Several “toy-model” examples of string theory solutions where the structures of integrable systems appear are briefly discussed. Then the author proceeds to the Seiberg-Witten solutions and show that they are indeed defined by the same data as finite-gap solutions to integrable systems. The complete formulation requires the introduction of certain deformations of the finite-gap solutions described in terms of quasiclassical or Whitham hierarchies. The explicit differential equations and direct computations of the prepotential of the effective theory are presented and compared when possible with the well-known computations from supersymmetric quantum gauge theories.Finally, the book discusses the properties of the exact solutions to SUSY Yang-Mills theories and their relation to integrable systems in the general context of the modern approach to nonperturbative string or M-theory.
Proceedings of the International Congress of Mathematicians
Author: S.D. Chatterji
Publisher: Birkhäuser
ISBN: 3034890788
Category : Mathematics
Languages : en
Pages : 1669
Book Description
Since the first ICM was held in Zürich in 1897, it has become the pinnacle of mathematical gatherings. It aims at giving an overview of the current state of different branches of mathematics and its applications as well as an insight into the treatment of special problems of exceptional importance. The proceedings of the ICMs have provided a rich chronology of mathematical development in all its branches and a unique documentation of contemporary research. They form an indispensable part of every mathematical library. The Proceedings of the International Congress of Mathematicians 1994, held in Zürich from August 3rd to 11th, 1994, are published in two volumes. Volume I contains an account of the organization of the Congress, the list of ordinary members, the reports on the work of the Fields Medalists and the Nevanlinna Prize Winner, the plenary one-hour addresses, and the invited addresses presented at Section Meetings 1 - 6. Volume II contains the invited address for Section Meetings 7 - 19. A complete author index is included in both volumes. '...the content of these impressive two volumes sheds a certain light on the present state of mathematical sciences and anybody doing research in mathematics should look carefully at these Proceedings. For young people beginning research, this is even more important, so these are a must for any serious mathematics library. The graphical presentation is, as always with Birkhäuser, excellent....' (Revue Roumaine de Mathematiques pures et Appliquées)
Publisher: Birkhäuser
ISBN: 3034890788
Category : Mathematics
Languages : en
Pages : 1669
Book Description
Since the first ICM was held in Zürich in 1897, it has become the pinnacle of mathematical gatherings. It aims at giving an overview of the current state of different branches of mathematics and its applications as well as an insight into the treatment of special problems of exceptional importance. The proceedings of the ICMs have provided a rich chronology of mathematical development in all its branches and a unique documentation of contemporary research. They form an indispensable part of every mathematical library. The Proceedings of the International Congress of Mathematicians 1994, held in Zürich from August 3rd to 11th, 1994, are published in two volumes. Volume I contains an account of the organization of the Congress, the list of ordinary members, the reports on the work of the Fields Medalists and the Nevanlinna Prize Winner, the plenary one-hour addresses, and the invited addresses presented at Section Meetings 1 - 6. Volume II contains the invited address for Section Meetings 7 - 19. A complete author index is included in both volumes. '...the content of these impressive two volumes sheds a certain light on the present state of mathematical sciences and anybody doing research in mathematics should look carefully at these Proceedings. For young people beginning research, this is even more important, so these are a must for any serious mathematics library. The graphical presentation is, as always with Birkhäuser, excellent....' (Revue Roumaine de Mathematiques pures et Appliquées)
Notes on Seiberg-Witten Theory
Author: Liviu I. Nicolaescu
Publisher: American Mathematical Soc.
ISBN: 0821821458
Category : Mathematics
Languages : en
Pages : 504
Book Description
After background on elliptic equations, Clifford algebras, Dirac operators, and Fredholm theory, chapters introduce solutions of the Seiberg-Witten equations and the group of gauge transformations, then look at algebraic surfaces. A final chapter presents in great detail a cut-and-paste technique for computing Seiberg-Witten invariants, covering elliptic equations on manifolds with cylindrical ends, finite energy monopoles on cylindrical manifolds, local and global properties of the moduli spaces of finite energy monopoles, and the process of reconstructing the space of monopoles on a 4-manifold decomposed into several parts by a hypersurface. Annotation copyrighted by Book News, Inc., Portland, OR.
Publisher: American Mathematical Soc.
ISBN: 0821821458
Category : Mathematics
Languages : en
Pages : 504
Book Description
After background on elliptic equations, Clifford algebras, Dirac operators, and Fredholm theory, chapters introduce solutions of the Seiberg-Witten equations and the group of gauge transformations, then look at algebraic surfaces. A final chapter presents in great detail a cut-and-paste technique for computing Seiberg-Witten invariants, covering elliptic equations on manifolds with cylindrical ends, finite energy monopoles on cylindrical manifolds, local and global properties of the moduli spaces of finite energy monopoles, and the process of reconstructing the space of monopoles on a 4-manifold decomposed into several parts by a hypersurface. Annotation copyrighted by Book News, Inc., Portland, OR.
Instanton Counting, Quantum Geometry and Algebra
Author: Taro Kimura
Publisher: Springer Nature
ISBN: 3030761908
Category : Science
Languages : en
Pages : 297
Book Description
This book pedagogically describes recent developments in gauge theory, in particular four-dimensional N = 2 supersymmetric gauge theory, in relation to various fields in mathematics, including algebraic geometry, geometric representation theory, vertex operator algebras. The key concept is the instanton, which is a solution to the anti-self-dual Yang–Mills equation in four dimensions. In the first part of the book, starting with the systematic description of the instanton, how to integrate out the instanton moduli space is explained together with the equivariant localization formula. It is then illustrated that this formalism is generalized to various situations, including quiver and fractional quiver gauge theory, supergroup gauge theory. The second part of the book is devoted to the algebraic geometric description of supersymmetric gauge theory, known as the Seiberg–Witten theory, together with string/M-theory point of view. Based on its relation to integrable systems, how to quantize such a geometric structure via the Ω-deformation of gauge theory is addressed. The third part of the book focuses on the quantum algebraic structure of supersymmetric gauge theory. After introducing the free field realization of gauge theory, the underlying infinite dimensional algebraic structure is discussed with emphasis on the connection with representation theory of quiver, which leads to the notion of quiver W-algebra. It is then clarified that such a gauge theory construction of the algebra naturally gives rise to further affinization and elliptic deformation of W-algebra.
Publisher: Springer Nature
ISBN: 3030761908
Category : Science
Languages : en
Pages : 297
Book Description
This book pedagogically describes recent developments in gauge theory, in particular four-dimensional N = 2 supersymmetric gauge theory, in relation to various fields in mathematics, including algebraic geometry, geometric representation theory, vertex operator algebras. The key concept is the instanton, which is a solution to the anti-self-dual Yang–Mills equation in four dimensions. In the first part of the book, starting with the systematic description of the instanton, how to integrate out the instanton moduli space is explained together with the equivariant localization formula. It is then illustrated that this formalism is generalized to various situations, including quiver and fractional quiver gauge theory, supergroup gauge theory. The second part of the book is devoted to the algebraic geometric description of supersymmetric gauge theory, known as the Seiberg–Witten theory, together with string/M-theory point of view. Based on its relation to integrable systems, how to quantize such a geometric structure via the Ω-deformation of gauge theory is addressed. The third part of the book focuses on the quantum algebraic structure of supersymmetric gauge theory. After introducing the free field realization of gauge theory, the underlying infinite dimensional algebraic structure is discussed with emphasis on the connection with representation theory of quiver, which leads to the notion of quiver W-algebra. It is then clarified that such a gauge theory construction of the algebra naturally gives rise to further affinization and elliptic deformation of W-algebra.
The Unity of Mathematics
Author: Pavel Etingof
Publisher: Springer Science & Business Media
ISBN: 0817644679
Category : Mathematics
Languages : en
Pages : 646
Book Description
Tribute to the vision and legacy of Israel Moiseevich Gel'fand Written by leading mathematicians, these invited papers reflect the unity of mathematics as a whole, with particular emphasis on the many connections among the fields of geometry, physics, and representation theory Topics include conformal field theory, K-theory, noncommutative geometry, gauge theory, representations of infinite-dimensional Lie algebras, and various aspects of the Langlands program
Publisher: Springer Science & Business Media
ISBN: 0817644679
Category : Mathematics
Languages : en
Pages : 646
Book Description
Tribute to the vision and legacy of Israel Moiseevich Gel'fand Written by leading mathematicians, these invited papers reflect the unity of mathematics as a whole, with particular emphasis on the many connections among the fields of geometry, physics, and representation theory Topics include conformal field theory, K-theory, noncommutative geometry, gauge theory, representations of infinite-dimensional Lie algebras, and various aspects of the Langlands program
Theoretical Physics at the End of the Twentieth Century
Author: Yvan Saint-Aubin
Publisher: Springer Science & Business Media
ISBN: 1475736711
Category : Science
Languages : en
Pages : 646
Book Description
Based on courses given at the CRM Banff summer school in 1999, this volume provides a snapshot of topics engaging theoretical physicists at the end of the twentieth century and the beginning of the twenty-first. Young physicists will find in these chapters pedagogical introductions to subjects currently active in theoretical physics, and more seasoned physicists will find a chance to share the excitement of fields outside their immediate research interests.
Publisher: Springer Science & Business Media
ISBN: 1475736711
Category : Science
Languages : en
Pages : 646
Book Description
Based on courses given at the CRM Banff summer school in 1999, this volume provides a snapshot of topics engaging theoretical physicists at the end of the twentieth century and the beginning of the twenty-first. Young physicists will find in these chapters pedagogical introductions to subjects currently active in theoretical physics, and more seasoned physicists will find a chance to share the excitement of fields outside their immediate research interests.
Sixteenth International Congress on Mathematical Physics
Author: Pavel Exner
Publisher: World Scientific
ISBN: 981430462X
Category : Science
Languages : en
Pages : 709
Book Description
The International Congress on Mathematical Physics is the flagship conference in this exciting field. Convening every three years, it gives a survey on the progress achieved in all branches of mathematical physics. It also provides a superb platform to discuss challenges and new ideas. The present volume collects material from the XVIth ICMP which was held in Prague, August 2009, and features most of the plenary lectures and invited lectures in topical sessions as well as information on other parts of the congress program. This volume provides a broad coverage of the field of mathematical physics, from dominantly mathematical subjects to particle physics, condensed matter, and application of mathematical physics methods in various areas such as astrophysics and ecology, amongst others.
Publisher: World Scientific
ISBN: 981430462X
Category : Science
Languages : en
Pages : 709
Book Description
The International Congress on Mathematical Physics is the flagship conference in this exciting field. Convening every three years, it gives a survey on the progress achieved in all branches of mathematical physics. It also provides a superb platform to discuss challenges and new ideas. The present volume collects material from the XVIth ICMP which was held in Prague, August 2009, and features most of the plenary lectures and invited lectures in topical sessions as well as information on other parts of the congress program. This volume provides a broad coverage of the field of mathematical physics, from dominantly mathematical subjects to particle physics, condensed matter, and application of mathematical physics methods in various areas such as astrophysics and ecology, amongst others.
Integrability: From Statistical Systems to Gauge Theory
Author: Patrick Dorey
Publisher: Oxford University Press
ISBN: 0192563319
Category : Science
Languages : en
Pages : 608
Book Description
This volume, 106 of the Les Houches Summer School series, brings together applications of integrability to supersymmetric gauge and string theory. The book focuses on the application of integrability and problems in quantum field theory. Particular emphasis is given to the exact solution of planar N=4 super-Yang-Mills theory and its relation with string theory on the one hand, and the exact determination of the low-energy physics of N=2 super-Yang-Mills theories on the other; links with other domains are also explored. The purpose of the Les Houches Summer School was to bring together young researchers and specialists from statistical physics, condensed matter physics, gauge and string theory, and mathematics, to stimulate discussion across these different research areas.
Publisher: Oxford University Press
ISBN: 0192563319
Category : Science
Languages : en
Pages : 608
Book Description
This volume, 106 of the Les Houches Summer School series, brings together applications of integrability to supersymmetric gauge and string theory. The book focuses on the application of integrability and problems in quantum field theory. Particular emphasis is given to the exact solution of planar N=4 super-Yang-Mills theory and its relation with string theory on the one hand, and the exact determination of the low-energy physics of N=2 super-Yang-Mills theories on the other; links with other domains are also explored. The purpose of the Les Houches Summer School was to bring together young researchers and specialists from statistical physics, condensed matter physics, gauge and string theory, and mathematics, to stimulate discussion across these different research areas.
From Hodge Theory to Integrability and TQFT
Author: Ron Donagi
Publisher: American Mathematical Soc.
ISBN: 082184430X
Category : Mathematics
Languages : en
Pages : 314
Book Description
"Ideas from quantum field theory and string theory have had an enormous impact on geometry over the last two decades. One extremely fruitful source of new mathematical ideas goes back to the works of Cecotti, Vafa, et al. around 1991 on the geometry of topological field theory. Their tt*-geometry (tt* stands for topological-antitopological) was motivated by physics, but it turned out to unify ideas from such separate branches of mathematics as singularity theory, Hodge theory, integrable systems, matrix models, and Hurwitz spaces. The interaction among these fields suggested by tt*-geometry has become a fast moving and exciting research area. This book, loosely based on the 2007 Augsburg, Germany workshop "From tQFT to tt* and Integrability", is the perfect introduction to the range of mathematical topics relevant to tt*-geometry. It begins with several surveys of the main features of tt*-geometry, Frobenius manifolds, twistors, and related structures in algebraic and differential geometry, each starting from basic definitions and leading to current research. The volume moves on to explorations of current foundational issues in Hodge theory: higher weight phenomena in twistor theory and non-commutative Hodge structures and their relation to mirror symmetry. The book concludes with a series of applications to integrable systems and enumerative geometry, exploring further extensions and connections to physics. With its progression through introductory, foundational, and exploratory material, this book is an indispensable companion for anyone working in the subject or wishing to enter it."--Publisher's website.
Publisher: American Mathematical Soc.
ISBN: 082184430X
Category : Mathematics
Languages : en
Pages : 314
Book Description
"Ideas from quantum field theory and string theory have had an enormous impact on geometry over the last two decades. One extremely fruitful source of new mathematical ideas goes back to the works of Cecotti, Vafa, et al. around 1991 on the geometry of topological field theory. Their tt*-geometry (tt* stands for topological-antitopological) was motivated by physics, but it turned out to unify ideas from such separate branches of mathematics as singularity theory, Hodge theory, integrable systems, matrix models, and Hurwitz spaces. The interaction among these fields suggested by tt*-geometry has become a fast moving and exciting research area. This book, loosely based on the 2007 Augsburg, Germany workshop "From tQFT to tt* and Integrability", is the perfect introduction to the range of mathematical topics relevant to tt*-geometry. It begins with several surveys of the main features of tt*-geometry, Frobenius manifolds, twistors, and related structures in algebraic and differential geometry, each starting from basic definitions and leading to current research. The volume moves on to explorations of current foundational issues in Hodge theory: higher weight phenomena in twistor theory and non-commutative Hodge structures and their relation to mirror symmetry. The book concludes with a series of applications to integrable systems and enumerative geometry, exploring further extensions and connections to physics. With its progression through introductory, foundational, and exploratory material, this book is an indispensable companion for anyone working in the subject or wishing to enter it."--Publisher's website.