Author: MIT Critical Data
Publisher: Springer
ISBN: 3319437429
Category : Medical
Languages : en
Pages : 435
Book Description
This book trains the next generation of scientists representing different disciplines to leverage the data generated during routine patient care. It formulates a more complete lexicon of evidence-based recommendations and support shared, ethical decision making by doctors with their patients. Diagnostic and therapeutic technologies continue to evolve rapidly, and both individual practitioners and clinical teams face increasingly complex ethical decisions. Unfortunately, the current state of medical knowledge does not provide the guidance to make the majority of clinical decisions on the basis of evidence. The present research infrastructure is inefficient and frequently produces unreliable results that cannot be replicated. Even randomized controlled trials (RCTs), the traditional gold standards of the research reliability hierarchy, are not without limitations. They can be costly, labor intensive, and slow, and can return results that are seldom generalizable to every patient population. Furthermore, many pertinent but unresolved clinical and medical systems issues do not seem to have attracted the interest of the research enterprise, which has come to focus instead on cellular and molecular investigations and single-agent (e.g., a drug or device) effects. For clinicians, the end result is a bit of a “data desert” when it comes to making decisions. The new research infrastructure proposed in this book will help the medical profession to make ethically sound and well informed decisions for their patients.
Secondary Analysis of Electronic Health Records
Author: MIT Critical Data
Publisher: Springer
ISBN: 3319437429
Category : Medical
Languages : en
Pages : 435
Book Description
This book trains the next generation of scientists representing different disciplines to leverage the data generated during routine patient care. It formulates a more complete lexicon of evidence-based recommendations and support shared, ethical decision making by doctors with their patients. Diagnostic and therapeutic technologies continue to evolve rapidly, and both individual practitioners and clinical teams face increasingly complex ethical decisions. Unfortunately, the current state of medical knowledge does not provide the guidance to make the majority of clinical decisions on the basis of evidence. The present research infrastructure is inefficient and frequently produces unreliable results that cannot be replicated. Even randomized controlled trials (RCTs), the traditional gold standards of the research reliability hierarchy, are not without limitations. They can be costly, labor intensive, and slow, and can return results that are seldom generalizable to every patient population. Furthermore, many pertinent but unresolved clinical and medical systems issues do not seem to have attracted the interest of the research enterprise, which has come to focus instead on cellular and molecular investigations and single-agent (e.g., a drug or device) effects. For clinicians, the end result is a bit of a “data desert” when it comes to making decisions. The new research infrastructure proposed in this book will help the medical profession to make ethically sound and well informed decisions for their patients.
Publisher: Springer
ISBN: 3319437429
Category : Medical
Languages : en
Pages : 435
Book Description
This book trains the next generation of scientists representing different disciplines to leverage the data generated during routine patient care. It formulates a more complete lexicon of evidence-based recommendations and support shared, ethical decision making by doctors with their patients. Diagnostic and therapeutic technologies continue to evolve rapidly, and both individual practitioners and clinical teams face increasingly complex ethical decisions. Unfortunately, the current state of medical knowledge does not provide the guidance to make the majority of clinical decisions on the basis of evidence. The present research infrastructure is inefficient and frequently produces unreliable results that cannot be replicated. Even randomized controlled trials (RCTs), the traditional gold standards of the research reliability hierarchy, are not without limitations. They can be costly, labor intensive, and slow, and can return results that are seldom generalizable to every patient population. Furthermore, many pertinent but unresolved clinical and medical systems issues do not seem to have attracted the interest of the research enterprise, which has come to focus instead on cellular and molecular investigations and single-agent (e.g., a drug or device) effects. For clinicians, the end result is a bit of a “data desert” when it comes to making decisions. The new research infrastructure proposed in this book will help the medical profession to make ethically sound and well informed decisions for their patients.
Registries for Evaluating Patient Outcomes
Author: Agency for Healthcare Research and Quality/AHRQ
Publisher: Government Printing Office
ISBN: 1587634333
Category : Medical
Languages : en
Pages : 385
Book Description
This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.
Publisher: Government Printing Office
ISBN: 1587634333
Category : Medical
Languages : en
Pages : 385
Book Description
This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.
Electronic Health Records and Medical Big Data
Author: Sharona Hoffman
Publisher: Cambridge University Press
ISBN: 1316738906
Category : Law
Languages : en
Pages :
Book Description
This book helps readers gain an in-depth understanding of electronic health record (EHR) systems, medical big data, and the regulations that govern them. It analyzes both the shortcomings and benefits of EHR systems, exploring the law's response to the creation of these systems, highlighting gaps in the current legal framework, and developing detailed recommendations for regulatory, policy, and technological improvements. Electronic Health Records and Medical Big Data addresses not only privacy and security concerns but also other important challenges, such as those related to data quality and data analysis. In addition, the author formulates a large body of recommendations to improve the technology's safety, security, and efficacy for both clinical and secondary (such as research) uses of medical data.
Publisher: Cambridge University Press
ISBN: 1316738906
Category : Law
Languages : en
Pages :
Book Description
This book helps readers gain an in-depth understanding of electronic health record (EHR) systems, medical big data, and the regulations that govern them. It analyzes both the shortcomings and benefits of EHR systems, exploring the law's response to the creation of these systems, highlighting gaps in the current legal framework, and developing detailed recommendations for regulatory, policy, and technological improvements. Electronic Health Records and Medical Big Data addresses not only privacy and security concerns but also other important challenges, such as those related to data quality and data analysis. In addition, the author formulates a large body of recommendations to improve the technology's safety, security, and efficacy for both clinical and secondary (such as research) uses of medical data.
Leveraging Data Science for Global Health
Author: Leo Anthony Celi
Publisher: Springer Nature
ISBN: 3030479943
Category : Medical
Languages : en
Pages : 471
Book Description
This open access book explores ways to leverage information technology and machine learning to combat disease and promote health, especially in resource-constrained settings. It focuses on digital disease surveillance through the application of machine learning to non-traditional data sources. Developing countries are uniquely prone to large-scale emerging infectious disease outbreaks due to disruption of ecosystems, civil unrest, and poor healthcare infrastructure – and without comprehensive surveillance, delays in outbreak identification, resource deployment, and case management can be catastrophic. In combination with context-informed analytics, students will learn how non-traditional digital disease data sources – including news media, social media, Google Trends, and Google Street View – can fill critical knowledge gaps and help inform on-the-ground decision-making when formal surveillance systems are insufficient.
Publisher: Springer Nature
ISBN: 3030479943
Category : Medical
Languages : en
Pages : 471
Book Description
This open access book explores ways to leverage information technology and machine learning to combat disease and promote health, especially in resource-constrained settings. It focuses on digital disease surveillance through the application of machine learning to non-traditional data sources. Developing countries are uniquely prone to large-scale emerging infectious disease outbreaks due to disruption of ecosystems, civil unrest, and poor healthcare infrastructure – and without comprehensive surveillance, delays in outbreak identification, resource deployment, and case management can be catastrophic. In combination with context-informed analytics, students will learn how non-traditional digital disease data sources – including news media, social media, Google Trends, and Google Street View – can fill critical knowledge gaps and help inform on-the-ground decision-making when formal surveillance systems are insufficient.
Clinical Research Informatics
Author: Rachel Richesson
Publisher: Springer Science & Business Media
ISBN: 1848824475
Category : Medical
Languages : en
Pages : 415
Book Description
The purpose of the book is to provide an overview of clinical research (types), activities, and areas where informatics and IT could fit into various activities and business practices. This book will introduce and apply informatics concepts only as they have particular relevance to clinical research settings.
Publisher: Springer Science & Business Media
ISBN: 1848824475
Category : Medical
Languages : en
Pages : 415
Book Description
The purpose of the book is to provide an overview of clinical research (types), activities, and areas where informatics and IT could fit into various activities and business practices. This book will introduce and apply informatics concepts only as they have particular relevance to clinical research settings.
Handbook of EHealth Evaluation
Author: Francis Yin Yee Lau
Publisher:
ISBN: 9781550586015
Category : Medical care
Languages : en
Pages : 487
Book Description
To order please visit https://onlineacademiccommunity.uvic.ca/press/books/ordering/
Publisher:
ISBN: 9781550586015
Category : Medical care
Languages : en
Pages : 487
Book Description
To order please visit https://onlineacademiccommunity.uvic.ca/press/books/ordering/
Clinical Text Mining
Author: Hercules Dalianis
Publisher: Springer
ISBN: 3319785036
Category : Computers
Languages : en
Pages : 192
Book Description
This open access book describes the results of natural language processing and machine learning methods applied to clinical text from electronic patient records. It is divided into twelve chapters. Chapters 1-4 discuss the history and background of the original paper-based patient records, their purpose, and how they are written and structured. These initial chapters do not require any technical or medical background knowledge. The remaining eight chapters are more technical in nature and describe various medical classifications and terminologies such as ICD diagnosis codes, SNOMED CT, MeSH, UMLS, and ATC. Chapters 5-10 cover basic tools for natural language processing and information retrieval, and how to apply them to clinical text. The difference between rule-based and machine learning-based methods, as well as between supervised and unsupervised machine learning methods, are also explained. Next, ethical concerns regarding the use of sensitive patient records for research purposes are discussed, including methods for de-identifying electronic patient records and safely storing patient records. The book’s closing chapters present a number of applications in clinical text mining and summarise the lessons learned from the previous chapters. The book provides a comprehensive overview of technical issues arising in clinical text mining, and offers a valuable guide for advanced students in health informatics, computational linguistics, and information retrieval, and for researchers entering these fields.
Publisher: Springer
ISBN: 3319785036
Category : Computers
Languages : en
Pages : 192
Book Description
This open access book describes the results of natural language processing and machine learning methods applied to clinical text from electronic patient records. It is divided into twelve chapters. Chapters 1-4 discuss the history and background of the original paper-based patient records, their purpose, and how they are written and structured. These initial chapters do not require any technical or medical background knowledge. The remaining eight chapters are more technical in nature and describe various medical classifications and terminologies such as ICD diagnosis codes, SNOMED CT, MeSH, UMLS, and ATC. Chapters 5-10 cover basic tools for natural language processing and information retrieval, and how to apply them to clinical text. The difference between rule-based and machine learning-based methods, as well as between supervised and unsupervised machine learning methods, are also explained. Next, ethical concerns regarding the use of sensitive patient records for research purposes are discussed, including methods for de-identifying electronic patient records and safely storing patient records. The book’s closing chapters present a number of applications in clinical text mining and summarise the lessons learned from the previous chapters. The book provides a comprehensive overview of technical issues arising in clinical text mining, and offers a valuable guide for advanced students in health informatics, computational linguistics, and information retrieval, and for researchers entering these fields.
Deep Learning Techniques for Biomedical and Health Informatics
Author: Basant Agarwal
Publisher: Academic Press
ISBN: 0128190620
Category : Science
Languages : en
Pages : 370
Book Description
Deep Learning Techniques for Biomedical and Health Informatics provides readers with the state-of-the-art in deep learning-based methods for biomedical and health informatics. The book covers not only the best-performing methods, it also presents implementation methods. The book includes all the prerequisite methodologies in each chapter so that new researchers and practitioners will find it very useful. Chapters go from basic methodology to advanced methods, including detailed descriptions of proposed approaches and comprehensive critical discussions on experimental results and how they are applied to Biomedical Engineering, Electronic Health Records, and medical image processing. - Examines a wide range of Deep Learning applications for Biomedical Engineering and Health Informatics, including Deep Learning for drug discovery, clinical decision support systems, disease diagnosis, prediction and monitoring - Discusses Deep Learning applied to Electronic Health Records (EHR), including health data structures and management, deep patient similarity learning, natural language processing, and how to improve clinical decision-making - Provides detailed coverage of Deep Learning for medical image processing, including optimizing medical big data, brain image analysis, brain tumor segmentation in MRI imaging, and the future of biomedical image analysis
Publisher: Academic Press
ISBN: 0128190620
Category : Science
Languages : en
Pages : 370
Book Description
Deep Learning Techniques for Biomedical and Health Informatics provides readers with the state-of-the-art in deep learning-based methods for biomedical and health informatics. The book covers not only the best-performing methods, it also presents implementation methods. The book includes all the prerequisite methodologies in each chapter so that new researchers and practitioners will find it very useful. Chapters go from basic methodology to advanced methods, including detailed descriptions of proposed approaches and comprehensive critical discussions on experimental results and how they are applied to Biomedical Engineering, Electronic Health Records, and medical image processing. - Examines a wide range of Deep Learning applications for Biomedical Engineering and Health Informatics, including Deep Learning for drug discovery, clinical decision support systems, disease diagnosis, prediction and monitoring - Discusses Deep Learning applied to Electronic Health Records (EHR), including health data structures and management, deep patient similarity learning, natural language processing, and how to improve clinical decision-making - Provides detailed coverage of Deep Learning for medical image processing, including optimizing medical big data, brain image analysis, brain tumor segmentation in MRI imaging, and the future of biomedical image analysis
The Computer-Based Patient Record
Author: Committee on Improving the Patient Record
Publisher: National Academies Press
ISBN: 030957885X
Category : Medical
Languages : en
Pages : 257
Book Description
Most industries have plunged into data automation, but health care organizations have lagged in moving patients' medical records from paper to computers. In its first edition, this book presented a blueprint for introducing the computer-based patient record (CPR). The revised edition adds new information to the original book. One section describes recent developments, including the creation of a computer-based patient record institute. An international chapter highlights what is new in this still-emerging technology. An expert committee explores the potential of machine-readable CPRs to improve diagnostic and care decisions, provide a database for policymaking, and much more, addressing these key questions: Who uses patient records? What technology is available and what further research is necessary to meet users' needs? What should government, medical organizations, and others do to make the transition to CPRs? The volume also explores such issues as privacy and confidentiality, costs, the need for training, legal barriers to CPRs, and other key topics.
Publisher: National Academies Press
ISBN: 030957885X
Category : Medical
Languages : en
Pages : 257
Book Description
Most industries have plunged into data automation, but health care organizations have lagged in moving patients' medical records from paper to computers. In its first edition, this book presented a blueprint for introducing the computer-based patient record (CPR). The revised edition adds new information to the original book. One section describes recent developments, including the creation of a computer-based patient record institute. An international chapter highlights what is new in this still-emerging technology. An expert committee explores the potential of machine-readable CPRs to improve diagnostic and care decisions, provide a database for policymaking, and much more, addressing these key questions: Who uses patient records? What technology is available and what further research is necessary to meet users' needs? What should government, medical organizations, and others do to make the transition to CPRs? The volume also explores such issues as privacy and confidentiality, costs, the need for training, legal barriers to CPRs, and other key topics.
Healthcare Data Analytics
Author: Chandan K. Reddy
Publisher: CRC Press
ISBN: 148223212X
Category : Business & Economics
Languages : en
Pages : 756
Book Description
At the intersection of computer science and healthcare, data analytics has emerged as a promising tool for solving problems across many healthcare-related disciplines. Supplying a comprehensive overview of recent healthcare analytics research, Healthcare Data Analytics provides a clear understanding of the analytical techniques currently available
Publisher: CRC Press
ISBN: 148223212X
Category : Business & Economics
Languages : en
Pages : 756
Book Description
At the intersection of computer science and healthcare, data analytics has emerged as a promising tool for solving problems across many healthcare-related disciplines. Supplying a comprehensive overview of recent healthcare analytics research, Healthcare Data Analytics provides a clear understanding of the analytical techniques currently available