Author: Boris S. Mordukhovich
Publisher: Springer Nature
ISBN: 303153476X
Category :
Languages : en
Pages : 802
Book Description
Second-Order Variational Analysis in Optimization, Variational Stability, and Control
Author: Boris S. Mordukhovich
Publisher: Springer Nature
ISBN: 303153476X
Category :
Languages : en
Pages : 802
Book Description
Publisher: Springer Nature
ISBN: 303153476X
Category :
Languages : en
Pages : 802
Book Description
Variational Analysis
Author: R. Tyrrell Rockafellar
Publisher: Springer Science & Business Media
ISBN: 3642024319
Category : Mathematics
Languages : en
Pages : 747
Book Description
From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.
Publisher: Springer Science & Business Media
ISBN: 3642024319
Category : Mathematics
Languages : en
Pages : 747
Book Description
From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.
Variational Analysis and Applications
Author: Boris S. Mordukhovich
Publisher: Springer
ISBN: 3319927752
Category : Mathematics
Languages : en
Pages : 636
Book Description
Building on fundamental results in variational analysis, this monograph presents new and recent developments in the field as well as selected applications. Accessible to a broad spectrum of potential readers, the main material is presented in finite-dimensional spaces. Infinite-dimensional developments are discussed at the end of each chapter with comprehensive commentaries which emphasize the essence of major results, track the genesis of ideas, provide historical comments, and illuminate challenging open questions and directions for future research. The first half of the book (Chapters 1–6) gives a systematic exposition of key concepts and facts, containing basic material as well as some recent and new developments. These first chapters are particularly accessible to masters/doctoral students taking courses in modern optimization, variational analysis, applied analysis, variational inequalities, and variational methods. The reader’s development of skills will be facilitated as they work through each, or a portion of, the multitude of exercises of varying levels. Additionally, the reader may find hints and references to more difficult exercises and are encouraged to receive further inspiration from the gems in chapter commentaries. Chapters 7–10 focus on recent results and applications of variational analysis to advanced problems in modern optimization theory, including its hierarchical and multiobjective aspects, as well as microeconomics, and related areas. It will be of great use to researchers and professionals in applied and behavioral sciences and engineering.
Publisher: Springer
ISBN: 3319927752
Category : Mathematics
Languages : en
Pages : 636
Book Description
Building on fundamental results in variational analysis, this monograph presents new and recent developments in the field as well as selected applications. Accessible to a broad spectrum of potential readers, the main material is presented in finite-dimensional spaces. Infinite-dimensional developments are discussed at the end of each chapter with comprehensive commentaries which emphasize the essence of major results, track the genesis of ideas, provide historical comments, and illuminate challenging open questions and directions for future research. The first half of the book (Chapters 1–6) gives a systematic exposition of key concepts and facts, containing basic material as well as some recent and new developments. These first chapters are particularly accessible to masters/doctoral students taking courses in modern optimization, variational analysis, applied analysis, variational inequalities, and variational methods. The reader’s development of skills will be facilitated as they work through each, or a portion of, the multitude of exercises of varying levels. Additionally, the reader may find hints and references to more difficult exercises and are encouraged to receive further inspiration from the gems in chapter commentaries. Chapters 7–10 focus on recent results and applications of variational analysis to advanced problems in modern optimization theory, including its hierarchical and multiobjective aspects, as well as microeconomics, and related areas. It will be of great use to researchers and professionals in applied and behavioral sciences and engineering.
Variational Methods in Shape Optimization Problems
Author: Dorin Bucur
Publisher: Springer Science & Business Media
ISBN: 0817644032
Category : Mathematics
Languages : en
Pages : 218
Book Description
Shape optimization problems are treated from the classical and modern perspectives Targets a broad audience of graduate students in pure and applied mathematics, as well as engineers requiring a solid mathematical basis for the solution of practical problems Requires only a standard knowledge in the calculus of variations, differential equations, and functional analysis Driven by several good examples and illustrations Poses some open questions.
Publisher: Springer Science & Business Media
ISBN: 0817644032
Category : Mathematics
Languages : en
Pages : 218
Book Description
Shape optimization problems are treated from the classical and modern perspectives Targets a broad audience of graduate students in pure and applied mathematics, as well as engineers requiring a solid mathematical basis for the solution of practical problems Requires only a standard knowledge in the calculus of variations, differential equations, and functional analysis Driven by several good examples and illustrations Poses some open questions.
Absolute Stability of Nonlinear Control Systems
Author: Xiao-Xin Liao
Publisher: Springer Science & Business Media
ISBN: 9401706085
Category : Science
Languages : en
Pages : 186
Book Description
As is well-known, a control system always works under a variety of accidental or continued disturbances. Therefore, in designing and analysing the control system, stability is the first thing to be considered. Classic control theory was basically limited to a discussion of linear systems with constant coefficients. The fundamental tools for such studies were the Routh-Hurwitz algebraic criterion and the Nyquist geometric criterion. However, modern control theory mainly deals with nonlinear problems. The stability analysis of nonlinear control systems based on Liapunov stability theory can be traced back to the Russian school of stability. In 1944, the Russian mathematician Lurie, a specialist in control theory, discussed the stability of an autopilot. The well-known Lurie problem and the concept of absolute stability are presented, which is of universal significance both in theory and practice. Up until the end of the 1950's, the field of absolute stability was monopolized mainly by Russian scholars such as A. 1. Lurie, M. A. Aizeman, A. M. Letov and others. At the beginning of the 1960's, some famous American mathematicians such as J. P. LaSalle, S. Lefschetz and R. E. Kalman engaged themself in this field. Meanwhile, the Romanian scholar Popov presented a well-known frequency criterion and consequently ma de a decisive breakthrough in the study of absolute stability.
Publisher: Springer Science & Business Media
ISBN: 9401706085
Category : Science
Languages : en
Pages : 186
Book Description
As is well-known, a control system always works under a variety of accidental or continued disturbances. Therefore, in designing and analysing the control system, stability is the first thing to be considered. Classic control theory was basically limited to a discussion of linear systems with constant coefficients. The fundamental tools for such studies were the Routh-Hurwitz algebraic criterion and the Nyquist geometric criterion. However, modern control theory mainly deals with nonlinear problems. The stability analysis of nonlinear control systems based on Liapunov stability theory can be traced back to the Russian school of stability. In 1944, the Russian mathematician Lurie, a specialist in control theory, discussed the stability of an autopilot. The well-known Lurie problem and the concept of absolute stability are presented, which is of universal significance both in theory and practice. Up until the end of the 1950's, the field of absolute stability was monopolized mainly by Russian scholars such as A. 1. Lurie, M. A. Aizeman, A. M. Letov and others. At the beginning of the 1960's, some famous American mathematicians such as J. P. LaSalle, S. Lefschetz and R. E. Kalman engaged themself in this field. Meanwhile, the Romanian scholar Popov presented a well-known frequency criterion and consequently ma de a decisive breakthrough in the study of absolute stability.
Optimization, Simulation and Control
Author: Rentsen Enkhbat
Publisher: Springer Nature
ISBN: 303141229X
Category : Mathematics
Languages : en
Pages : 202
Book Description
This volume gathers selected, peer-reviewed works presented at the 7th International Conference on Optimization, Simulation and Control, ICOSC 2022, held at the National University of Mongolia, Ulaanbaatar, June 20–22, 2022. Topics covered include (but are not limited to) mathematical programming; network, global, linear, nonlinear, parametric, stochastic, and multi-objective optimization; control theory; biomathematics; and deep and machine learning, to name a few. Held every three years since 2002, the ICOSC conference has become a traditional gathering for experienced and young researchers in optimization and control to share recent findings in these fields and discuss novel applications in myriad sectors. Researchers and graduate students in the fields of mathematics, engineering, and computer science can greatly benefit from this book, which can also be enjoyed by advanced practitioners in research laboratories and the industry. The 2022 edition of the ICOSC conference was sponsored by the Mongolian Academy of Sciences, the National University of Mongolia and the German-Mongolian Institute for Resources and Technology.
Publisher: Springer Nature
ISBN: 303141229X
Category : Mathematics
Languages : en
Pages : 202
Book Description
This volume gathers selected, peer-reviewed works presented at the 7th International Conference on Optimization, Simulation and Control, ICOSC 2022, held at the National University of Mongolia, Ulaanbaatar, June 20–22, 2022. Topics covered include (but are not limited to) mathematical programming; network, global, linear, nonlinear, parametric, stochastic, and multi-objective optimization; control theory; biomathematics; and deep and machine learning, to name a few. Held every three years since 2002, the ICOSC conference has become a traditional gathering for experienced and young researchers in optimization and control to share recent findings in these fields and discuss novel applications in myriad sectors. Researchers and graduate students in the fields of mathematics, engineering, and computer science can greatly benefit from this book, which can also be enjoyed by advanced practitioners in research laboratories and the industry. The 2022 edition of the ICOSC conference was sponsored by the Mongolian Academy of Sciences, the National University of Mongolia and the German-Mongolian Institute for Resources and Technology.
Methods for Constructing Exact Solutions of Partial Differential Equations
Author: Sergey V. Meleshko
Publisher: Springer Science & Business Media
ISBN: 0387252657
Category : Technology & Engineering
Languages : en
Pages : 367
Book Description
Differential equations, especially nonlinear, present the most effective way for describing complex physical processes. Methods for constructing exact solutions of differential equations play an important role in applied mathematics and mechanics. This book aims to provide scientists, engineers and students with an easy-to-follow, but comprehensive, description of the methods for constructing exact solutions of differential equations.
Publisher: Springer Science & Business Media
ISBN: 0387252657
Category : Technology & Engineering
Languages : en
Pages : 367
Book Description
Differential equations, especially nonlinear, present the most effective way for describing complex physical processes. Methods for constructing exact solutions of differential equations play an important role in applied mathematics and mechanics. This book aims to provide scientists, engineers and students with an easy-to-follow, but comprehensive, description of the methods for constructing exact solutions of differential equations.
An Easy Path to Convex Analysis and Applications
Author: Boris Mordukhovich
Publisher: Springer Nature
ISBN: 3031024060
Category : Mathematics
Languages : en
Pages : 202
Book Description
Convex optimization has an increasing impact on many areas of mathematics, applied sciences, and practical applications. It is now being taught at many universities and being used by researchers of different fields. As convex analysis is the mathematical foundation for convex optimization, having deep knowledge of convex analysis helps students and researchers apply its tools more effectively. The main goal of this book is to provide an easy access to the most fundamental parts of convex analysis and its applications to optimization. Modern techniques of variational analysis are employed to clarify and simplify some basic proofs in convex analysis and build the theory of generalized differentiation for convex functions and sets in finite dimensions. We also present new applications of convex analysis to location problems in connection with many interesting geometric problems such as the Fermat-Torricelli problem, the Heron problem, the Sylvester problem, and their generalizations. Of course, we do not expect to touch every aspect of convex analysis, but the book consists of sufficient material for a first course on this subject. It can also serve as supplemental reading material for a course on convex optimization and applications.
Publisher: Springer Nature
ISBN: 3031024060
Category : Mathematics
Languages : en
Pages : 202
Book Description
Convex optimization has an increasing impact on many areas of mathematics, applied sciences, and practical applications. It is now being taught at many universities and being used by researchers of different fields. As convex analysis is the mathematical foundation for convex optimization, having deep knowledge of convex analysis helps students and researchers apply its tools more effectively. The main goal of this book is to provide an easy access to the most fundamental parts of convex analysis and its applications to optimization. Modern techniques of variational analysis are employed to clarify and simplify some basic proofs in convex analysis and build the theory of generalized differentiation for convex functions and sets in finite dimensions. We also present new applications of convex analysis to location problems in connection with many interesting geometric problems such as the Fermat-Torricelli problem, the Heron problem, the Sylvester problem, and their generalizations. Of course, we do not expect to touch every aspect of convex analysis, but the book consists of sufficient material for a first course on this subject. It can also serve as supplemental reading material for a course on convex optimization and applications.
Optimization Methods in Operations Research and Systems Analysis
Author: K. V. Mital
Publisher:
ISBN:
Category : Mathematical optimization
Languages : en
Pages : 352
Book Description
Publisher:
ISBN:
Category : Mathematical optimization
Languages : en
Pages : 352
Book Description
Calculus of Variations and Optimal Control Theory
Author: Daniel Liberzon
Publisher: Princeton University Press
ISBN: 0691151873
Category : Mathematics
Languages : en
Pages : 255
Book Description
This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control
Publisher: Princeton University Press
ISBN: 0691151873
Category : Mathematics
Languages : en
Pages : 255
Book Description
This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control