Screen Printed Stretchable Electronics

Screen Printed Stretchable Electronics PDF Author: Ulrika Boda
Publisher: Linköping University Electronic Press
ISBN: 918075077X
Category :
Languages : en
Pages : 96

Get Book Here

Book Description
Wearable electronics that can be seamlessly integrated into clothing, onto skin, or inside the body, can enable a variety of novel applications within healthcare monitoring, biosensing, biomedical devices and the internet of things. Seamless integration requires matching of the mechanical properties of the electronics to clothing, skin, and tissues, i.e., the electronics need to be soft, flexible, and stretchable. One approach to achieve this is to make all or most components of a device stretchable in themselves by developing functional intrinsically stretchable composites. Such composites are typically based on a filler, which provides electronic or other functionality, and an elastomer matrix, which provides the mechanical properties of the composites. Manufacturing of intrinsically stretchable electronics is challenging and often involve time consuming and tedious fabrication procedures of low throughput, based on chemically harmful monomers and solvents. An alternative approach, printing of electronics, has experienced a boom in the past decade, recently even for stretchable applications. However, despite its appeal, stretchable printed electronic products have yet to reach the consumer market in larger numbers. Screen printing is a versatile printing method that is cost-effective, scalable, can be tailored to use harmless solvents with little waste, and can be made environmentally friendly by careful choice of materials. Furthermore, some applications of stretchable technology – such as implants and on-skin electronics – require conductors that are stable under humid, corrosive, or polluted conditions, which puts even more weight into choices of ink components. In paper I, we protected readily available conducting silver flakes through a thin coating with gold in a low-toxicity water-based process and demonstrated its use in inks for screen printed corrosion-resistant stretchable conductors. The novel silver-gold flake ink was used to fabricate a functional stretchable near-field communication device. Papers II and III both concern entirely screen printed and inherently stretchable devices, utilizing novel stretchable inks in combination with commercial inks to print vertical stacks. Two electrochemical devices – electrochromic displays and organic electrochemical transistors – were printed and tested under stretched conditions to push the limits of how screen printing can be used in applications for thin and stretchable wearable technology. The results show that the devices can retain electrical function even under practically high strains of 50 % (display) and 100 % (transistor). Finally, in paper IV, we investigate the operational principle of gold nanowire- based stretchable composites and find that interactions on the nano-and microscale differ between composites using the same filler but different elastomers. This study sheds light on the importance of the type of elastomer chosen for composites, as this heavily influences the composite’s electrical performance under strain. Altogether, the studies presented in this thesis provide knowledge, materials, and processes that in the long run can contribute to more effective devices within healthcare and other wearable electronics applications.

Screen Printed Stretchable Electronics

Screen Printed Stretchable Electronics PDF Author: Ulrika Boda
Publisher: Linköping University Electronic Press
ISBN: 918075077X
Category :
Languages : en
Pages : 96

Get Book Here

Book Description
Wearable electronics that can be seamlessly integrated into clothing, onto skin, or inside the body, can enable a variety of novel applications within healthcare monitoring, biosensing, biomedical devices and the internet of things. Seamless integration requires matching of the mechanical properties of the electronics to clothing, skin, and tissues, i.e., the electronics need to be soft, flexible, and stretchable. One approach to achieve this is to make all or most components of a device stretchable in themselves by developing functional intrinsically stretchable composites. Such composites are typically based on a filler, which provides electronic or other functionality, and an elastomer matrix, which provides the mechanical properties of the composites. Manufacturing of intrinsically stretchable electronics is challenging and often involve time consuming and tedious fabrication procedures of low throughput, based on chemically harmful monomers and solvents. An alternative approach, printing of electronics, has experienced a boom in the past decade, recently even for stretchable applications. However, despite its appeal, stretchable printed electronic products have yet to reach the consumer market in larger numbers. Screen printing is a versatile printing method that is cost-effective, scalable, can be tailored to use harmless solvents with little waste, and can be made environmentally friendly by careful choice of materials. Furthermore, some applications of stretchable technology – such as implants and on-skin electronics – require conductors that are stable under humid, corrosive, or polluted conditions, which puts even more weight into choices of ink components. In paper I, we protected readily available conducting silver flakes through a thin coating with gold in a low-toxicity water-based process and demonstrated its use in inks for screen printed corrosion-resistant stretchable conductors. The novel silver-gold flake ink was used to fabricate a functional stretchable near-field communication device. Papers II and III both concern entirely screen printed and inherently stretchable devices, utilizing novel stretchable inks in combination with commercial inks to print vertical stacks. Two electrochemical devices – electrochromic displays and organic electrochemical transistors – were printed and tested under stretched conditions to push the limits of how screen printing can be used in applications for thin and stretchable wearable technology. The results show that the devices can retain electrical function even under practically high strains of 50 % (display) and 100 % (transistor). Finally, in paper IV, we investigate the operational principle of gold nanowire- based stretchable composites and find that interactions on the nano-and microscale differ between composites using the same filler but different elastomers. This study sheds light on the importance of the type of elastomer chosen for composites, as this heavily influences the composite’s electrical performance under strain. Altogether, the studies presented in this thesis provide knowledge, materials, and processes that in the long run can contribute to more effective devices within healthcare and other wearable electronics applications.

Screen Printing Technology for Energy Devices

Screen Printing Technology for Energy Devices PDF Author: Andreas Willfahrt
Publisher: Linköping University Electronic Press
ISBN: 9176852741
Category :
Languages : en
Pages : 106

Get Book Here

Book Description
The technical application of screen and stencil printing has been state of the art for decades. As part of the subtractive production process of printed circuit boards, for instance, screen and stencil printing play an important role. With the end of the 20th century, another field has opened up with organic electronics. Since then, more and more functional layers have been produced using printing methods. Printed electronics devices offer properties that give almost every freedom to the creativity of product development. Flexibility, low weight, use of non-toxic materials, simple disposal and an enormous number of units due to the production process are some of the prominent keywords associated with this field. Screen printing is a widely used process in printed electronics, as this process is very flexible with regard to the materials that can be used. In addition, a minimum resolution of approximately 30 µm is sufficiently high. The ink film thickness, which can be controlled over a wide range, is an extremely important advantage of the process. Depending on the viscosity, layer thicknesses of several hundred nanometres up to several hundred micrometres can be realised. The conversion and storage of energy became an increasingly important topic in recent years. Since regenerative energy sources, such as photovoltaics or wind energy, often supply energy intermittently, appropriate storage systems must be available. This applies to large installations for the power supply of society, but also in the context of autarkic sensors, such as those used in the Internet of Things or domestic/industrial automation. A combination of micro-energy converters and energy storage devices is an adequate concept for providing energy for such applications. In this thesis the above mentioned keywords are addressed and the feasibility of printed thermoelectric energy converters and supercapacitors as energy storage devices are investigated. The efficiency of thermoelectric generators (TEG) is low, but in industrial environments, for example, a large amount of unused low temperature heat energy can be found. If the production costs of TEGs are low, conversion of this unused heat energy can contribute to increasing system efficiency. Additionally, printing of supercapacitor energy storage devices increases the usability of the TEG. It is appropriate to use both components as complementary parts in an energy system. Den tekniska tillämpningen av skärm- och stencilutskrift har varit toppmoderna i årtionden. Som en del av den subtraktiva produktionsprocessen av tryckta kretskort spelar exempelvis skärm- och stencilutskrift en viktig roll. I slutet av 1900-talet har ett annat fält öppnat med organisk elektronik. Sedan dess har allt fler funktionella lager producerats med hjälp av tryckmetoder. Tryckta elektronikanordningar erbjuder egenskaper som ger nästan all frihet till kreativiteten i produktutvecklingen. Flexibilitet, låg vikt, användning av giftfria material, enkelt bortskaffande och ett enormt antal enheter på grund av produktionsprocessen är några av de framträdande nyckelord som hör till detta område. Skärmtryck är en allmänt använd process i tryckt elektronik, eftersom processen är mycket flexibel med avseende på material som kan användas. Dessutom är en minsta upplösning på cirka 30 µm tillräckligt bra. Bläckfilmens tjocklek, som kan styras över ett brett område, är en extremt viktig fördel med processen. Beroende på viskositeten kan skikttjockleken på flera hundra nanometer upp till flera hundra mikrometer realiseras. Energikonvertering och lagring har blivit ett allt viktigare ämne de senaste åren. Eftersom regenerativa energikällor, såsom fotovoltaik eller vindkraft, ofta levererar energi intermittent, måste lämpliga lagringssystem vara tillgängliga. Detta gäller stora installationer för samhällets strömförsörjning, men också inom ramen för autarkiska sensorer, som de som används i saker av saker eller inhemsk / industriell automation. En kombination av mikroenergiomvandlare och energilagringsenheter är ett lämpligt koncept för att tillhandahålla energi för sådana applikationer. I denna avhandling behandlas ovan nämnda nyckelord. Genomförbarhet av tryckta termoelektriska energiomvandlare och superkapacitorer som energilagringsenheter undersöks. Effektiviteten hos termoelektriska generatorer (TEG) är låg, men i industriella miljöer kan exempelvis en stor mängd oanvänd låg temperatur värmeenergi hittas. Om produktionskostnaderna för TEG är låga kan konvertering av denna oanvända värmeenergi bidra till ökad systemeffektivitet. Dessutom ökar utskrift av superkapacitorer användbarheten hos TEG. Det är lämpligt att använda båda komponenterna.

Hybrid Nanomaterials

Hybrid Nanomaterials PDF Author: Rafael Vargas-Bernal
Publisher: BoD – Books on Demand
ISBN: 1838803378
Category : Technology & Engineering
Languages : en
Pages : 150

Get Book Here

Book Description
Two of the hottest research topics today are hybrid nanomaterials and flexible electronics. As such, this book covers both topics with chapters written by experts from across the globe. Chapters address hybrid nanomaterials, electronic transport in black phosphorus, three-dimensional nanocarbon hybrids, hybrid ion exchangers, pressure-sensitive adhesives for flexible electronics, simulation and modeling of transistors, smart manufacturing technologies, and inorganic semiconductors.

Introduction to Printed Electronics

Introduction to Printed Electronics PDF Author: Katsuaki Suganuma
Publisher: Springer Science & Business Media
ISBN: 146149625X
Category : Technology & Engineering
Languages : en
Pages : 129

Get Book Here

Book Description
This book describes in detail modern technologies for printed electronics, explaining how nanotechnology and modern printing technology are merging to revolutionize electronics fabrication of thin, lightweight, large and inexpensive products. Readers will benefit from the explanations of materials, devices and circuits used to design and implement the latest applications of printed electronics, such as thin flexible OLED displays, organic solar cells, OLED lighting, smart wallpaper, sensors, logic, memory and more.

Flexible and Wearable Electronics for Smart Clothing

Flexible and Wearable Electronics for Smart Clothing PDF Author: Gang Wang
Publisher: John Wiley & Sons
ISBN: 3527818561
Category : Technology & Engineering
Languages : en
Pages : 464

Get Book Here

Book Description
Provides the state-of-the-art on wearable technology for smart clothing The book gives a coherent overview of recent development on flexible electronics for smart clothing with emphasis on wearability and durability of the materials and devices. It offers detailed information on the basic functional components of the flexible and wearable electronics including sensing, systems-on-a-chip, interacting, and energy, as well as the integrating and connecting of electronics into textile form. It also provides insights into the compatibility and integration of functional materials, electronics, and the clothing technology. Flexible and Wearable Electronics for Smart Clothing offers comprehensive coverage of the technology in four parts. The first part discusses wearable organic nano-sensors, stimuli-responsive electronic skins, and flexible thermoelectrics and thermoelectric textiles. The next part examines textile triboelectric nanogenerators for energy harvesting, flexible and wearable solar cells and supercapacitors, and flexible and wearable lithium-ion batteries. Thermal and humid management for next-generation textiles, functionalization of fiber materials for washable smart wearable textiles, and flexible microfluidics for wearable electronics are covered in the next section. The last part introduces readers to piezoelectric materials and devices based flexible bio-integrated electronics, printed electronics for smart clothes, and the materials and processes for stretchable and wearable e-textile devices. -Presents the most recent developments in wearable technology such as wearable nanosensors, logic circuit, artificial intelligence, energy harvesting, and wireless communication -Covers the flexible and wearable electronics as essential functional components for smart clothing from sensing, systems-on-a-chip, interacting, energy to the integrating and connecting of electronics -Of high interest to a large and interdisciplinary target group, including materials scientists, textile chemists, and electronic engineers in academia and industry Flexible and Wearable Electronics for Smart Clothing will appeal to materials scientists, textile industry professionals, textile engineers, electronics engineers, and sensor developers.

Printed Electronics

Printed Electronics PDF Author: Zheng Cui
Publisher: John Wiley & Sons
ISBN: 1118920945
Category : Technology & Engineering
Languages : en
Pages : 360

Get Book Here

Book Description
This book provides an overview of the newly emerged and highly interdisciplinary field of printed electronics • Provides an overview of the latest developments and research results in the field of printed electronics • Topics addressed include: organic printable electronic materials, inorganic printable electronic materials, printing processes and equipments for electronic manufacturing, printable transistors, printable photovoltaic devices, printable lighting and display, encapsulation and packaging of printed electronic devices, and applications of printed electronics • Discusses the principles of the above topics, with support of examples and graphic illustrations • Serves both as an advanced introductory to the topic and as an aid for professional development into the new field • Includes end of chapter references and links to further reading

Organic and Printed Electronics

Organic and Printed Electronics PDF Author: Giovanni Nisato
Publisher: CRC Press
ISBN: 104003554X
Category : Technology & Engineering
Languages : en
Pages : 777

Get Book Here

Book Description
The field of organic and printed electronics (OPE) is well established in terms of academic, scientific, and technological research. The mass applications, ranging from displays to printed sensors to photovoltaics, are growing and becoming all the more relevant today. This book provides a comprehensive introduction to organic flexible and printed electronics, their fundamental aspects, core technologies, and applications and is authored by international expert practitioners in the field. The book is a key reference resource specially designed to address students in their final undergraduate or beginning graduate studies as well as engineers interested in approaching this field from an application perspective. In this second edition of the book, almost all chapters have been revised and updated. Among others, the second edition includes new chapters on smart textiles and on photovoltaics. The chapter on characterization techniques has been expanded and includes new references to standards. The contents on circular economy, innovation management, and roadmapping chapters have been largely augmented and updated. Finally, the chapter on hands-on experiments includes new set-ups on dye solar cells and supercapacitors.

Large Area and Flexible Electronics

Large Area and Flexible Electronics PDF Author: Mario Caironi
Publisher: John Wiley & Sons
ISBN: 3527679995
Category : Technology & Engineering
Languages : en
Pages : 588

Get Book Here

Book Description
From materials to applications, this ready reference covers the entire value chain from fundamentals via processing right up to devices, presenting different approaches to large-area electronics, thus enabling readers to compare materials, properties and performance. Divided into two parts, the first focuses on the materials used for the electronic functionality, covering organic and inorganic semiconductors, including vacuum and solution-processed metal-oxide semiconductors, nanomembranes and nanocrystals, as well as conductors and insulators. The second part reviews the devices and applications of large-area electronics, including flexible and ultra-high-resolution displays, light-emitting transistors, organic and inorganic photovoltaics, large-area imagers and sensors, non-volatile memories and radio-frequency identification tags. With its academic and industrial viewpoints, this volume provides in-depth knowledge for experienced researchers while also serving as a first-stop resource for those entering the field.

Advanced Materials for Printed Flexible Electronics

Advanced Materials for Printed Flexible Electronics PDF Author: Colin Tong
Publisher: Springer Nature
ISBN: 3030798046
Category : Technology & Engineering
Languages : en
Pages : 641

Get Book Here

Book Description
This book provides a comprehensive introduction to printed flexible electronics and their applications, including the basics of modern printing technologies, printable inks, performance characterization, device design, modeling, and fabrication processes. A wide range of materials used for printed flexible electronics are also covered in depth. Bridging the gap between the creation of structure and function, printed flexible electronics have been explored for manufacturing of flexible, stretchable, wearable, and conformal electronics device with conventional, 3D, and hybrid printing technologies. Advanced materials such as polymers, ceramics, nanoparticles, 2D materials, and nanocomposites have enabled a wide variety of applications, such as transparent conductive films, thin film transistors, printable solar cells, flexible energy harvesting and storage devices, electroluminescent devices, and wearable sensors. This book provides students, researchers and engineers with the information to understand the current status and future trends in printed flexible electronics, and acquire skills for selecting and using materials and additive manufacturing processes in the design of printed flexible electronics.

Handbook of Flexible and Stretchable Electronics

Handbook of Flexible and Stretchable Electronics PDF Author: Muhammad M. Hussain
Publisher: CRC Press
ISBN: 1351623095
Category : Technology & Engineering
Languages : en
Pages : 572

Get Book Here

Book Description
Flexibility and stretchability of electronics are crucial for next generation electronic devices that involve skin contact sensing and therapeutic actuation. This handbook provides a complete entrée to the field, from solid-state physics to materials chemistry, processing, devices, performance, and reliability testing, and integrated systems development. This work shows how microelectronics, signal processing, and wireless communications in the same circuitry are impacting electronics, healthcare, and energy applications. Key Features: • Covers the fundamentals to device applications, including solid-state and mechanics, chemistry, materials science, characterization techniques, and fabrication; • Offers a comprehensive base of knowledge for moving forward in this field, from foundational research to technology development; • Focuses on processing, characterization, and circuits and systems integration for device applications; • Addresses the basic physical properties and mechanics, as well as the nuts and bolts of reliability and performance analysis; • Discusses various technology applications, from printed electronics to logic and memory devices, sensors, actuators, displays, and energy storage and harvesting. This handbook will serve as the one-stop knowledge base for readership who are interested in flexible and stretchable electronics.