Author: Robert Nola
Publisher: Routledge
ISBN: 1317493486
Category : Philosophy
Languages : en
Pages : 343
Book Description
What is it to be scientific? Is there such a thing as scientific method? And if so, how might such methods be justified? Robert Nola and Howard Sankey seek to provide answers to these fundamental questions in their exploration of the major recent theories of scientific method. Although for many scientists their understanding of method is something they just pick up in the course of being trained, Nola and Sankey argue that it is possible to be explicit about what this tacit understanding of method is, rather than leave it as some unfathomable mystery. They robustly defend the idea that there is such a thing as scientific method and show how this might be legitimated. This book begins with the question of what methodology might mean and explores the notions of values, rules and principles, before investigating how methodologists have sought to show that our scientific methods are rational. Part 2 of this book sets out some principles of inductive method and examines its alternatives including abduction, IBE, and hypothetico-deductivism. Part 3 introduces probabilistic modes of reasoning, particularly Bayesianism in its various guises, and shows how it is able to give an account of many of the values and rules of method. Part 4 considers the ideas of philosophers who have proposed distinctive theories of method such as Popper, Lakatos, Kuhn and Feyerabend and Part 5 continues this theme by considering philosophers who have proposed naturalised theories of method such as Quine, Laudan and Rescher. This book offers readers a comprehensive introduction to the idea of scientific method and a wide-ranging discussion of how historians of science, philosophers of science and scientists have grappled with the question over the last fifty years.
Theories of Scientific Method
Author: Robert Nola
Publisher: Routledge
ISBN: 1317493486
Category : Philosophy
Languages : en
Pages : 343
Book Description
What is it to be scientific? Is there such a thing as scientific method? And if so, how might such methods be justified? Robert Nola and Howard Sankey seek to provide answers to these fundamental questions in their exploration of the major recent theories of scientific method. Although for many scientists their understanding of method is something they just pick up in the course of being trained, Nola and Sankey argue that it is possible to be explicit about what this tacit understanding of method is, rather than leave it as some unfathomable mystery. They robustly defend the idea that there is such a thing as scientific method and show how this might be legitimated. This book begins with the question of what methodology might mean and explores the notions of values, rules and principles, before investigating how methodologists have sought to show that our scientific methods are rational. Part 2 of this book sets out some principles of inductive method and examines its alternatives including abduction, IBE, and hypothetico-deductivism. Part 3 introduces probabilistic modes of reasoning, particularly Bayesianism in its various guises, and shows how it is able to give an account of many of the values and rules of method. Part 4 considers the ideas of philosophers who have proposed distinctive theories of method such as Popper, Lakatos, Kuhn and Feyerabend and Part 5 continues this theme by considering philosophers who have proposed naturalised theories of method such as Quine, Laudan and Rescher. This book offers readers a comprehensive introduction to the idea of scientific method and a wide-ranging discussion of how historians of science, philosophers of science and scientists have grappled with the question over the last fifty years.
Publisher: Routledge
ISBN: 1317493486
Category : Philosophy
Languages : en
Pages : 343
Book Description
What is it to be scientific? Is there such a thing as scientific method? And if so, how might such methods be justified? Robert Nola and Howard Sankey seek to provide answers to these fundamental questions in their exploration of the major recent theories of scientific method. Although for many scientists their understanding of method is something they just pick up in the course of being trained, Nola and Sankey argue that it is possible to be explicit about what this tacit understanding of method is, rather than leave it as some unfathomable mystery. They robustly defend the idea that there is such a thing as scientific method and show how this might be legitimated. This book begins with the question of what methodology might mean and explores the notions of values, rules and principles, before investigating how methodologists have sought to show that our scientific methods are rational. Part 2 of this book sets out some principles of inductive method and examines its alternatives including abduction, IBE, and hypothetico-deductivism. Part 3 introduces probabilistic modes of reasoning, particularly Bayesianism in its various guises, and shows how it is able to give an account of many of the values and rules of method. Part 4 considers the ideas of philosophers who have proposed distinctive theories of method such as Popper, Lakatos, Kuhn and Feyerabend and Part 5 continues this theme by considering philosophers who have proposed naturalised theories of method such as Quine, Laudan and Rescher. This book offers readers a comprehensive introduction to the idea of scientific method and a wide-ranging discussion of how historians of science, philosophers of science and scientists have grappled with the question over the last fifty years.
Scientific Method
Author: Barry Gower
Publisher: Routledge
ISBN: 1134806302
Category : Philosophy
Languages : en
Pages : 285
Book Description
The central theme running throughout this outstanding new survey is the nature of the philosophical debate created by modern science's foundation in experimental and mathematical method. More recently, recognition that reasoning in science is probabilistic generated intense debate about whether and how it should be constrained so as to ensure the practical certainty of the conclusions drawn. These debates brought to light issues of a philosophical nature which form the core of many scientific controversies today. Scientific Method: A Historical and Philosophical Introduction presents these debates through clear and comparative discussion of key figures in the history of science. Key chapters critically discuss * Galileo's demonstrative method, Bacon's inductive method, and Newton's rules of reasoning * the rise of probabilistic `Bayesian' methods in the eighteenth century * the method of hypotheses through the work of Herschel, Mill and Whewell * the conventionalist views of Poincaré and Duhem * the inductivism of Peirce, Russell and Keynes * Popper's falsification compared with Reichenbach's enumerative induction * Carnap's scientific method as Bayesian reasoning The debates are brought up to date in the final chapters by considering the ways in which ideas about method in the physical and biological sciences have affected thinking about method in the social sciences. This debate is analyzed through the ideas of key theorists such as Kuhn, Lakatos, and Feyerabend.
Publisher: Routledge
ISBN: 1134806302
Category : Philosophy
Languages : en
Pages : 285
Book Description
The central theme running throughout this outstanding new survey is the nature of the philosophical debate created by modern science's foundation in experimental and mathematical method. More recently, recognition that reasoning in science is probabilistic generated intense debate about whether and how it should be constrained so as to ensure the practical certainty of the conclusions drawn. These debates brought to light issues of a philosophical nature which form the core of many scientific controversies today. Scientific Method: A Historical and Philosophical Introduction presents these debates through clear and comparative discussion of key figures in the history of science. Key chapters critically discuss * Galileo's demonstrative method, Bacon's inductive method, and Newton's rules of reasoning * the rise of probabilistic `Bayesian' methods in the eighteenth century * the method of hypotheses through the work of Herschel, Mill and Whewell * the conventionalist views of Poincaré and Duhem * the inductivism of Peirce, Russell and Keynes * Popper's falsification compared with Reichenbach's enumerative induction * Carnap's scientific method as Bayesian reasoning The debates are brought up to date in the final chapters by considering the ways in which ideas about method in the physical and biological sciences have affected thinking about method in the social sciences. This debate is analyzed through the ideas of key theorists such as Kuhn, Lakatos, and Feyerabend.
String Theory and the Scientific Method
Author: Richard Dawid
Publisher: Cambridge University Press
ISBN: 1107067588
Category : Science
Languages : en
Pages : 213
Book Description
String theory has played a highly influential role in theoretical physics for nearly three decades and has substantially altered our view of the elementary building principles of the Universe. However, the theory remains empirically unconfirmed, and is expected to remain so for the foreseeable future. So why do string theorists have such a strong belief in their theory? This book explores this question, offering a novel insight into the nature of theory assessment itself. Dawid approaches the topic from a unique position, having extensive experience in both philosophy and high-energy physics. He argues that string theory is just the most conspicuous example of a number of theories in high-energy physics where non-empirical theory assessment has an important part to play. Aimed at physicists and philosophers of science, the book does not use mathematical formalism and explains most technical terms.
Publisher: Cambridge University Press
ISBN: 1107067588
Category : Science
Languages : en
Pages : 213
Book Description
String theory has played a highly influential role in theoretical physics for nearly three decades and has substantially altered our view of the elementary building principles of the Universe. However, the theory remains empirically unconfirmed, and is expected to remain so for the foreseeable future. So why do string theorists have such a strong belief in their theory? This book explores this question, offering a novel insight into the nature of theory assessment itself. Dawid approaches the topic from a unique position, having extensive experience in both philosophy and high-energy physics. He argues that string theory is just the most conspicuous example of a number of theories in high-energy physics where non-empirical theory assessment has an important part to play. Aimed at physicists and philosophers of science, the book does not use mathematical formalism and explains most technical terms.
A Summary of Scientific Method
Author: Peter Kosso
Publisher: Springer Science & Business Media
ISBN: 9400716141
Category : Science
Languages : en
Pages : 48
Book Description
A Summary of Scientific Method is a brief description of what makes science scientific. It is written in a direct, clear style that is accessible and informative for scientists and science students. It is intended to help science teachers explain how science works, highlighting strengths without ignoring limitations, and to help scientists articulate the process and standards of their work. The book demonstrates that there are several important requirements for being scientific, and the most fundamental of these is maintaining an extensive, interconnected, coherent network of ideas. Some components in the network are empirical, others are theoretical, and they support each other. Clarifying the structure of this web of knowledge explains the role of the commonly cited aspects of scientific method, things like hypotheses, theories, testing, evidence, and the like. A Summary of Scientific Method provides a clear, intuitive, and accurate model of scientific method.
Publisher: Springer Science & Business Media
ISBN: 9400716141
Category : Science
Languages : en
Pages : 48
Book Description
A Summary of Scientific Method is a brief description of what makes science scientific. It is written in a direct, clear style that is accessible and informative for scientists and science students. It is intended to help science teachers explain how science works, highlighting strengths without ignoring limitations, and to help scientists articulate the process and standards of their work. The book demonstrates that there are several important requirements for being scientific, and the most fundamental of these is maintaining an extensive, interconnected, coherent network of ideas. Some components in the network are empirical, others are theoretical, and they support each other. Clarifying the structure of this web of knowledge explains the role of the commonly cited aspects of scientific method, things like hypotheses, theories, testing, evidence, and the like. A Summary of Scientific Method provides a clear, intuitive, and accurate model of scientific method.
General Philosophy of Science: Focal Issues
Author:
Publisher: Elsevier
ISBN: 0080548547
Category : Philosophy
Languages : en
Pages : 713
Book Description
Scientists use concepts and principles that are partly specific for their subject matter, but they also share part of them with colleagues working in different fields. Compare the biological notion of a 'natural kind' with the general notion of 'confirmation' of a hypothesis by certain evidence. Or compare the physical principle of the 'conservation of energy' and the general principle of 'the unity of science'. Scientists agree that all such notions and principles aren't as crystal clear as one might wish. An important task of the philosophy of the special sciences, such as philosophy of physics, of biology and of economics, to mention only a few of the many flourishing examples, is the clarification of such subject specific concepts and principles. Similarly, an important task of 'general' philosophy of science is the clarification of concepts like 'confirmation' and principles like 'the unity of science'. It is evident that clarfication of concepts and principles only makes sense if one tries to do justice, as much as possible, to the actual use of these notions by scientists, without however following this use slavishly. That is, occasionally a philosopher may have good reasons for suggesting to scientists that they should deviate from a standard use. Frequently, this amounts to a plea for differentiation in order to stop debates at cross-purposes due to the conflation of different meanings. While the special volumes of the series of Handbooks of the Philosophy of Science address topics relative to a specific discipline, this general volume deals with focal issues of a general nature. After an editorial introduction about the dominant method of clarifying concepts and principles in philosophy of science, called explication, the first five chapters deal with the following subjects. Laws, theories, and research programs as units of empirical knowledge (Theo Kuipers), various past and contemporary perspectives on explanation (Stathis Psillos), the evaluation of theories in terms of their virtues (Ilkka Niiniluto), and the role of experiments in the natural sciences, notably physics and biology (Allan Franklin), and their role in the social sciences, notably economics (Wenceslao Gonzalez). In the subsequent three chapters there is even more attention to various positions and methods that philosophers of science and scientists may favor: ontological, epistemological, and methodological positions (James Ladyman), reduction, integration, and the unity of science as aims in the sciences and the humanities (William Bechtel and Andrew Hamilton), and logical, historical and computational approaches to the philosophy of science (Atocha Aliseda and Donald Gillies).The volume concludes with the much debated question of demarcating science from nonscience (Martin Mahner) and the rich European-American history of the philosophy of science in the 20th century (Friedrich Stadler). - Comprehensive coverage of the philosophy of science written by leading philosophers in this field - Clear style of writing for an interdisciplinary audience - No specific pre-knowledge required
Publisher: Elsevier
ISBN: 0080548547
Category : Philosophy
Languages : en
Pages : 713
Book Description
Scientists use concepts and principles that are partly specific for their subject matter, but they also share part of them with colleagues working in different fields. Compare the biological notion of a 'natural kind' with the general notion of 'confirmation' of a hypothesis by certain evidence. Or compare the physical principle of the 'conservation of energy' and the general principle of 'the unity of science'. Scientists agree that all such notions and principles aren't as crystal clear as one might wish. An important task of the philosophy of the special sciences, such as philosophy of physics, of biology and of economics, to mention only a few of the many flourishing examples, is the clarification of such subject specific concepts and principles. Similarly, an important task of 'general' philosophy of science is the clarification of concepts like 'confirmation' and principles like 'the unity of science'. It is evident that clarfication of concepts and principles only makes sense if one tries to do justice, as much as possible, to the actual use of these notions by scientists, without however following this use slavishly. That is, occasionally a philosopher may have good reasons for suggesting to scientists that they should deviate from a standard use. Frequently, this amounts to a plea for differentiation in order to stop debates at cross-purposes due to the conflation of different meanings. While the special volumes of the series of Handbooks of the Philosophy of Science address topics relative to a specific discipline, this general volume deals with focal issues of a general nature. After an editorial introduction about the dominant method of clarifying concepts and principles in philosophy of science, called explication, the first five chapters deal with the following subjects. Laws, theories, and research programs as units of empirical knowledge (Theo Kuipers), various past and contemporary perspectives on explanation (Stathis Psillos), the evaluation of theories in terms of their virtues (Ilkka Niiniluto), and the role of experiments in the natural sciences, notably physics and biology (Allan Franklin), and their role in the social sciences, notably economics (Wenceslao Gonzalez). In the subsequent three chapters there is even more attention to various positions and methods that philosophers of science and scientists may favor: ontological, epistemological, and methodological positions (James Ladyman), reduction, integration, and the unity of science as aims in the sciences and the humanities (William Bechtel and Andrew Hamilton), and logical, historical and computational approaches to the philosophy of science (Atocha Aliseda and Donald Gillies).The volume concludes with the much debated question of demarcating science from nonscience (Martin Mahner) and the rich European-American history of the philosophy of science in the 20th century (Friedrich Stadler). - Comprehensive coverage of the philosophy of science written by leading philosophers in this field - Clear style of writing for an interdisciplinary audience - No specific pre-knowledge required
Scientific Method in Philosophy
Author: Bertrand Russell
Publisher:
ISBN:
Category : Philosophy
Languages : en
Pages : 40
Book Description
Publisher:
ISBN:
Category : Philosophy
Languages : en
Pages : 40
Book Description
Scientific Method in Practice
Author: Hugh G. Gauch
Publisher: Cambridge University Press
ISBN: 9780521017084
Category : Science
Languages : en
Pages : 458
Book Description
As the gateway to scientific thinking, an understanding of the scientific method is essential for success and productivity in science. This book is the first synthesis of the practice and the philosophy of the scientific method. It will enable scientists to be better scientists by offering them a deeper understanding of the underpinnings of the scientific method, thereby leading to more productive research and experimentation. It will also give scientists a more accurate perspective on the rationality of the scientific approach and its role in society. Beginning with a discussion of today's 'science wars' and science's presuppositions, the book then explores deductive and inductive logic, probability, statistics, and parsimony, and concludes with an examination of science's powers and limits, and a look at science education. Topics relevant to a variety of disciplines are treated, and clarifying figures, case studies, and chapter summaries enhance the pedagogy. This adeptly executed, comprehensive, yet pragmatic work yields a new synergy suitable for scientists and instructors, and graduate students and advanced undergraduates.
Publisher: Cambridge University Press
ISBN: 9780521017084
Category : Science
Languages : en
Pages : 458
Book Description
As the gateway to scientific thinking, an understanding of the scientific method is essential for success and productivity in science. This book is the first synthesis of the practice and the philosophy of the scientific method. It will enable scientists to be better scientists by offering them a deeper understanding of the underpinnings of the scientific method, thereby leading to more productive research and experimentation. It will also give scientists a more accurate perspective on the rationality of the scientific approach and its role in society. Beginning with a discussion of today's 'science wars' and science's presuppositions, the book then explores deductive and inductive logic, probability, statistics, and parsimony, and concludes with an examination of science's powers and limits, and a look at science education. Topics relevant to a variety of disciplines are treated, and clarifying figures, case studies, and chapter summaries enhance the pedagogy. This adeptly executed, comprehensive, yet pragmatic work yields a new synergy suitable for scientists and instructors, and graduate students and advanced undergraduates.
Charles Peirce's Theory of Scientific Method
Author: Francis Eagan Reilly
Publisher:
ISBN: 9780823284726
Category : Science
Languages : en
Pages :
Book Description
This text is an attempt to understand a significant part of the complex thought of Charles Sanders Peirce, especially in those areas which interested him most: scientific method and related philosophical questions. It is organized primarily from Peirce's own writings, taking chronological settings into account where appropriate, and pointing out the close connections of several major themes in Peirce's work which show the rich diversity of his thought and its systematic unity.
Publisher:
ISBN: 9780823284726
Category : Science
Languages : en
Pages :
Book Description
This text is an attempt to understand a significant part of the complex thought of Charles Sanders Peirce, especially in those areas which interested him most: scientific method and related philosophical questions. It is organized primarily from Peirce's own writings, taking chronological settings into account where appropriate, and pointing out the close connections of several major themes in Peirce's work which show the rich diversity of his thought and its systematic unity.
Conjectures and Refutations
Author: Karl Raimund Popper
Publisher: Psychology Press
ISBN: 9780415285940
Category : Knowledge, Theory of
Languages : en
Pages : 614
Book Description
Conjectures and Refutations is one of Karl Popper's most wide-ranging and popular works, notable not only for its acute insight into the way scientific knowledge grows, but also for applying those insights to politics and to history. It provides one of the clearest and most accessible statements of the fundamental idea that guided his work: not only our knowledge, but our aims and our standards, grow through an unending process of trial and error.
Publisher: Psychology Press
ISBN: 9780415285940
Category : Knowledge, Theory of
Languages : en
Pages : 614
Book Description
Conjectures and Refutations is one of Karl Popper's most wide-ranging and popular works, notable not only for its acute insight into the way scientific knowledge grows, but also for applying those insights to politics and to history. It provides one of the clearest and most accessible statements of the fundamental idea that guided his work: not only our knowledge, but our aims and our standards, grow through an unending process of trial and error.
Scientific Method in Brief
Author: Hugh G. Gauch, Jr
Publisher: Cambridge University Press
ISBN: 1107311527
Category : Science
Languages : en
Pages : 501
Book Description
The fundamental principles of the scientific method are essential for enhancing perspective, increasing productivity, and stimulating innovation. These principles include deductive and inductive logic, probability, parsimony and hypothesis testing, as well as science's presuppositions, limitations, ethics and bold claims of rationality and truth. The examples and case studies drawn upon in this book span the physical, biological and social sciences; include applications in agriculture, engineering and medicine; and also explore science's interrelationships with disciplines in the humanities such as philosophy and law. Informed by position papers on science from the American Association for the Advancement of Science, National Academy of Sciences and National Science Foundation, this book aligns with a distinctively mainstream vision of science. It is an ideal resource for anyone undertaking a systematic study of scientific method for the first time, from undergraduates to professionals in both the sciences and the humanities.
Publisher: Cambridge University Press
ISBN: 1107311527
Category : Science
Languages : en
Pages : 501
Book Description
The fundamental principles of the scientific method are essential for enhancing perspective, increasing productivity, and stimulating innovation. These principles include deductive and inductive logic, probability, parsimony and hypothesis testing, as well as science's presuppositions, limitations, ethics and bold claims of rationality and truth. The examples and case studies drawn upon in this book span the physical, biological and social sciences; include applications in agriculture, engineering and medicine; and also explore science's interrelationships with disciplines in the humanities such as philosophy and law. Informed by position papers on science from the American Association for the Advancement of Science, National Academy of Sciences and National Science Foundation, this book aligns with a distinctively mainstream vision of science. It is an ideal resource for anyone undertaking a systematic study of scientific method for the first time, from undergraduates to professionals in both the sciences and the humanities.