Author: R.L. Grossman
Publisher: Springer Science & Business Media
ISBN: 9781402001147
Category : Computers
Languages : en
Pages : 632
Book Description
Advances in technology are making massive data sets common in many scientific disciplines, such as astronomy, medical imaging, bio-informatics, combinatorial chemistry, remote sensing, and physics. To find useful information in these data sets, scientists and engineers are turning to data mining techniques. This book is a collection of papers based on the first two in a series of workshops on mining scientific datasets. It illustrates the diversity of problems and application areas that can benefit from data mining, as well as the issues and challenges that differentiate scientific data mining from its commercial counterpart. While the focus of the book is on mining scientific data, the work is of broader interest as many of the techniques can be applied equally well to data arising in business and web applications. Audience: This work would be an excellent text for students and researchers who are familiar with the basic principles of data mining and want to learn more about the application of data mining to their problem in science or engineering.
Data Mining for Scientific and Engineering Applications
Author: R.L. Grossman
Publisher: Springer Science & Business Media
ISBN: 9781402001147
Category : Computers
Languages : en
Pages : 632
Book Description
Advances in technology are making massive data sets common in many scientific disciplines, such as astronomy, medical imaging, bio-informatics, combinatorial chemistry, remote sensing, and physics. To find useful information in these data sets, scientists and engineers are turning to data mining techniques. This book is a collection of papers based on the first two in a series of workshops on mining scientific datasets. It illustrates the diversity of problems and application areas that can benefit from data mining, as well as the issues and challenges that differentiate scientific data mining from its commercial counterpart. While the focus of the book is on mining scientific data, the work is of broader interest as many of the techniques can be applied equally well to data arising in business and web applications. Audience: This work would be an excellent text for students and researchers who are familiar with the basic principles of data mining and want to learn more about the application of data mining to their problem in science or engineering.
Publisher: Springer Science & Business Media
ISBN: 9781402001147
Category : Computers
Languages : en
Pages : 632
Book Description
Advances in technology are making massive data sets common in many scientific disciplines, such as astronomy, medical imaging, bio-informatics, combinatorial chemistry, remote sensing, and physics. To find useful information in these data sets, scientists and engineers are turning to data mining techniques. This book is a collection of papers based on the first two in a series of workshops on mining scientific datasets. It illustrates the diversity of problems and application areas that can benefit from data mining, as well as the issues and challenges that differentiate scientific data mining from its commercial counterpart. While the focus of the book is on mining scientific data, the work is of broader interest as many of the techniques can be applied equally well to data arising in business and web applications. Audience: This work would be an excellent text for students and researchers who are familiar with the basic principles of data mining and want to learn more about the application of data mining to their problem in science or engineering.
Scientific Data Mining
Author: Chandrika Kamath
Publisher: SIAM
ISBN: 0898717698
Category : Mathematics
Languages : en
Pages : 295
Book Description
Chandrika Kamath describes how techniques from the multi-disciplinary field of data mining can be used to address the modern problem of data overload in science and engineering domains. Starting with a survey of analysis problems in different applications, it identifies the common themes across these domains.
Publisher: SIAM
ISBN: 0898717698
Category : Mathematics
Languages : en
Pages : 295
Book Description
Chandrika Kamath describes how techniques from the multi-disciplinary field of data mining can be used to address the modern problem of data overload in science and engineering domains. Starting with a survey of analysis problems in different applications, it identifies the common themes across these domains.
Life Science Data Mining
Author: Stephen T. C. Wong
Publisher: World Scientific Publishing Company
ISBN:
Category : Computers
Languages : en
Pages : 392
Book Description
This timely book identifies and highlights the latest data mining paradigms to analyze, combine, integrate, model and simulate vast amounts of heterogeneous multi-modal, multi-scale data for emerging real-world applications in life science.The cutting-edge topics presented include bio-surveillance, disease outbreak detection, high throughput bioimaging, drug screening, predictive toxicology, biosensors, and the integration of macro-scale bio-surveillance and environmental data with micro-scale biological data for personalized medicine. This collection of works from leading researchers in the field offers readers an exceptional start in these areas.
Publisher: World Scientific Publishing Company
ISBN:
Category : Computers
Languages : en
Pages : 392
Book Description
This timely book identifies and highlights the latest data mining paradigms to analyze, combine, integrate, model and simulate vast amounts of heterogeneous multi-modal, multi-scale data for emerging real-world applications in life science.The cutting-edge topics presented include bio-surveillance, disease outbreak detection, high throughput bioimaging, drug screening, predictive toxicology, biosensors, and the integration of macro-scale bio-surveillance and environmental data with micro-scale biological data for personalized medicine. This collection of works from leading researchers in the field offers readers an exceptional start in these areas.
Data Mining and Machine Learning
Author: Mohammed J. Zaki
Publisher: Cambridge University Press
ISBN: 1108473989
Category : Business & Economics
Languages : en
Pages : 779
Book Description
New to the second edition of this advanced text are several chapters on regression, including neural networks and deep learning.
Publisher: Cambridge University Press
ISBN: 1108473989
Category : Business & Economics
Languages : en
Pages : 779
Book Description
New to the second edition of this advanced text are several chapters on regression, including neural networks and deep learning.
Clinical Data-Mining
Author: Irwin Epstein
Publisher: Oxford University Press
ISBN: 019533552X
Category : Computers
Languages : en
Pages : 241
Book Description
Clinical Data-Mining (CDM) involves the conceptualization, extraction, analysis, and interpretation of available clinical data for practice knowledge-building, clinical decision-making and practitioner reflection. Depending upon the type of data mined, CDM can be qualitative or quantitative; it is generally retrospective, but may be meaningfully combined with original data collection.Any research method that relies on the contents of case records or information systems data inevitably has limitations, but with proper safeguards these can be minimized. Among CDM's strengths however, are that it is unobtrusive, inexpensive, presents little risk to research subjects, and is ethically compatible with practitioner value commitments. When conducted by practitioners, CDM yields conceptual as well as data-driven insight into their own practice- and program-generated questions.This pocket guide, from a seasoned practice-based researcher, covers all the basics of conducting practitioner-initiated CDM studies or CDM doctoral dissertations, drawing extensively on published CDM studies and completed CDM dissertations from multiple social work settings in the United States, Australia, Israel, Hong Kong and the United Kingdom. In addition, it describes consulting principles for researchers interested in forging collaborative university-agency CDM partnerships, making it a practical tool for novice practitioner-researchers and veteran academic-researchers alike.As such, this book is an exceptional guide both for professionals conducting practice-based research as well as for social work faculty seeking an evidence-informed approach to practice-research integration.
Publisher: Oxford University Press
ISBN: 019533552X
Category : Computers
Languages : en
Pages : 241
Book Description
Clinical Data-Mining (CDM) involves the conceptualization, extraction, analysis, and interpretation of available clinical data for practice knowledge-building, clinical decision-making and practitioner reflection. Depending upon the type of data mined, CDM can be qualitative or quantitative; it is generally retrospective, but may be meaningfully combined with original data collection.Any research method that relies on the contents of case records or information systems data inevitably has limitations, but with proper safeguards these can be minimized. Among CDM's strengths however, are that it is unobtrusive, inexpensive, presents little risk to research subjects, and is ethically compatible with practitioner value commitments. When conducted by practitioners, CDM yields conceptual as well as data-driven insight into their own practice- and program-generated questions.This pocket guide, from a seasoned practice-based researcher, covers all the basics of conducting practitioner-initiated CDM studies or CDM doctoral dissertations, drawing extensively on published CDM studies and completed CDM dissertations from multiple social work settings in the United States, Australia, Israel, Hong Kong and the United Kingdom. In addition, it describes consulting principles for researchers interested in forging collaborative university-agency CDM partnerships, making it a practical tool for novice practitioner-researchers and veteran academic-researchers alike.As such, this book is an exceptional guide both for professionals conducting practice-based research as well as for social work faculty seeking an evidence-informed approach to practice-research integration.
Data Mining: Concepts and Techniques
Author: Jiawei Han
Publisher: Elsevier
ISBN: 0123814804
Category : Computers
Languages : en
Pages : 740
Book Description
Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data
Publisher: Elsevier
ISBN: 0123814804
Category : Computers
Languages : en
Pages : 740
Book Description
Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data
Data Mining and Analysis
Author: Mohammed J. Zaki
Publisher: Cambridge University Press
ISBN: 0521766338
Category : Computers
Languages : en
Pages : 607
Book Description
A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.
Publisher: Cambridge University Press
ISBN: 0521766338
Category : Computers
Languages : en
Pages : 607
Book Description
A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.
Principles of Data Mining
Author: Max Bramer
Publisher: Springer
ISBN: 1447173074
Category : Computers
Languages : en
Pages : 530
Book Description
This book explains and explores the principal techniques of Data Mining, the automatic extraction of implicit and potentially useful information from data, which is increasingly used in commercial, scientific and other application areas. It focuses on classification, association rule mining and clustering. Each topic is clearly explained, with a focus on algorithms not mathematical formalism, and is illustrated by detailed worked examples. The book is written for readers without a strong background in mathematics or statistics and any formulae used are explained in detail. It can be used as a textbook to support courses at undergraduate or postgraduate levels in a wide range of subjects including Computer Science, Business Studies, Marketing, Artificial Intelligence, Bioinformatics and Forensic Science. As an aid to self study, this book aims to help general readers develop the necessary understanding of what is inside the 'black box' so they can use commercial data mining packages discriminatingly, as well as enabling advanced readers or academic researchers to understand or contribute to future technical advances in the field. Each chapter has practical exercises to enable readers to check their progress. A full glossary of technical terms used is included. This expanded third edition includes detailed descriptions of algorithms for classifying streaming data, both stationary data, where the underlying model is fixed, and data that is time-dependent, where the underlying model changes from time to time - a phenomenon known as concept drift.
Publisher: Springer
ISBN: 1447173074
Category : Computers
Languages : en
Pages : 530
Book Description
This book explains and explores the principal techniques of Data Mining, the automatic extraction of implicit and potentially useful information from data, which is increasingly used in commercial, scientific and other application areas. It focuses on classification, association rule mining and clustering. Each topic is clearly explained, with a focus on algorithms not mathematical formalism, and is illustrated by detailed worked examples. The book is written for readers without a strong background in mathematics or statistics and any formulae used are explained in detail. It can be used as a textbook to support courses at undergraduate or postgraduate levels in a wide range of subjects including Computer Science, Business Studies, Marketing, Artificial Intelligence, Bioinformatics and Forensic Science. As an aid to self study, this book aims to help general readers develop the necessary understanding of what is inside the 'black box' so they can use commercial data mining packages discriminatingly, as well as enabling advanced readers or academic researchers to understand or contribute to future technical advances in the field. Each chapter has practical exercises to enable readers to check their progress. A full glossary of technical terms used is included. This expanded third edition includes detailed descriptions of algorithms for classifying streaming data, both stationary data, where the underlying model is fixed, and data that is time-dependent, where the underlying model changes from time to time - a phenomenon known as concept drift.
Principles of Data Mining
Author: Max Bramer
Publisher: Springer Science & Business Media
ISBN: 1846287669
Category : Computers
Languages : en
Pages : 342
Book Description
This book explains the principal techniques of data mining: for classification, generation of association rules and clustering. It is written for readers without a strong background in mathematics or statistics and focuses on detailed examples and explanations of the algorithms given. This will benefit readers of all levels, from those who use data mining via commercial packages, right through to academic researchers. The book aims to help the general reader develop the necessary understanding to use commercial data mining packages, and to enable advanced readers to understand or contribute to future technical advances. Includes exercises and glossary.
Publisher: Springer Science & Business Media
ISBN: 1846287669
Category : Computers
Languages : en
Pages : 342
Book Description
This book explains the principal techniques of data mining: for classification, generation of association rules and clustering. It is written for readers without a strong background in mathematics or statistics and focuses on detailed examples and explanations of the algorithms given. This will benefit readers of all levels, from those who use data mining via commercial packages, right through to academic researchers. The book aims to help the general reader develop the necessary understanding to use commercial data mining packages, and to enable advanced readers to understand or contribute to future technical advances. Includes exercises and glossary.
Commercial Data Mining
Author: David Nettleton
Publisher: Elsevier
ISBN: 012416658X
Category : Computers
Languages : en
Pages : 361
Book Description
Whether you are brand new to data mining or working on your tenth predictive analytics project, Commercial Data Mining will be there for you as an accessible reference outlining the entire process and related themes. In this book, you'll learn that your organization does not need a huge volume of data or a Fortune 500 budget to generate business using existing information assets. Expert author David Nettleton guides you through the process from beginning to end and covers everything from business objectives to data sources, and selection to analysis and predictive modeling. Commercial Data Mining includes case studies and practical examples from Nettleton's more than 20 years of commercial experience. Real-world cases covering customer loyalty, cross-selling, and audience prediction in industries including insurance, banking, and media illustrate the concepts and techniques explained throughout the book. - Illustrates cost-benefit evaluation of potential projects - Includes vendor-agnostic advice on what to look for in off-the-shelf solutions as well as tips on building your own data mining tools - Approachable reference can be read from cover to cover by readers of all experience levels - Includes practical examples and case studies as well as actionable business insights from author's own experience
Publisher: Elsevier
ISBN: 012416658X
Category : Computers
Languages : en
Pages : 361
Book Description
Whether you are brand new to data mining or working on your tenth predictive analytics project, Commercial Data Mining will be there for you as an accessible reference outlining the entire process and related themes. In this book, you'll learn that your organization does not need a huge volume of data or a Fortune 500 budget to generate business using existing information assets. Expert author David Nettleton guides you through the process from beginning to end and covers everything from business objectives to data sources, and selection to analysis and predictive modeling. Commercial Data Mining includes case studies and practical examples from Nettleton's more than 20 years of commercial experience. Real-world cases covering customer loyalty, cross-selling, and audience prediction in industries including insurance, banking, and media illustrate the concepts and techniques explained throughout the book. - Illustrates cost-benefit evaluation of potential projects - Includes vendor-agnostic advice on what to look for in off-the-shelf solutions as well as tips on building your own data mining tools - Approachable reference can be read from cover to cover by readers of all experience levels - Includes practical examples and case studies as well as actionable business insights from author's own experience