Scientific Computing with Case Studies

Scientific Computing with Case Studies PDF Author: Dianne P. O'Leary
Publisher: SIAM
ISBN: 0898716667
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
This book is a practical guide to the numerical solution of linear and nonlinear equations, differential equations, optimization problems, and eigenvalue problems. It treats standard problems and introduces important variants such as sparse systems, differential-algebraic equations, constrained optimization, Monte Carlo simulations, and parametric studies. Stability and error analysis are emphasized, and the Matlab algorithms are grounded in sound principles of software design and understanding of machine arithmetic and memory management. Nineteen case studies provide experience in mathematical modeling and algorithm design, motivated by problems in physics, engineering, epidemiology, chemistry, and biology. The topics included go well beyond the standard first-course syllabus, introducing important problems such as differential-algebraic equations and conic optimization problems, and important solution techniques such as continuation methods. The case studies cover a wide variety of fascinating applications, from modeling the spread of an epidemic to determining truss configurations.

Scientific Computing with Case Studies

Scientific Computing with Case Studies PDF Author: Dianne P. O'Leary
Publisher: SIAM
ISBN: 0898716667
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
This book is a practical guide to the numerical solution of linear and nonlinear equations, differential equations, optimization problems, and eigenvalue problems. It treats standard problems and introduces important variants such as sparse systems, differential-algebraic equations, constrained optimization, Monte Carlo simulations, and parametric studies. Stability and error analysis are emphasized, and the Matlab algorithms are grounded in sound principles of software design and understanding of machine arithmetic and memory management. Nineteen case studies provide experience in mathematical modeling and algorithm design, motivated by problems in physics, engineering, epidemiology, chemistry, and biology. The topics included go well beyond the standard first-course syllabus, introducing important problems such as differential-algebraic equations and conic optimization problems, and important solution techniques such as continuation methods. The case studies cover a wide variety of fascinating applications, from modeling the spread of an epidemic to determining truss configurations.

Scientific Computing

Scientific Computing PDF Author: Michael T. Heath
Publisher: SIAM
ISBN: 1611975573
Category : Science
Languages : en
Pages : 587

Get Book Here

Book Description
This book differs from traditional numerical analysis texts in that it focuses on the motivation and ideas behind the algorithms presented rather than on detailed analyses of them. It presents a broad overview of methods and software for solving mathematical problems arising in computational modeling and data analysis, including proper problem formulation, selection of effective solution algorithms, and interpretation of results.? In the 20 years since its original publication, the modern, fundamental perspective of this book has aged well, and it continues to be used in the classroom. This Classics edition has been updated to include pointers to Python software and the Chebfun package, expansions on barycentric formulation for Lagrange polynomial interpretation and stochastic methods, and the availability of about 100 interactive educational modules that dynamically illustrate the concepts and algorithms in the book. Scientific Computing: An Introductory Survey, Second Edition is intended as both a textbook and a reference for computationally oriented disciplines that need to solve mathematical problems.

Scientific Computing

Scientific Computing PDF Author: John A. Trangenstein
Publisher: Springer
ISBN: 3319691058
Category : Mathematics
Languages : en
Pages : 638

Get Book Here

Book Description
This is the first of three volumes providing a comprehensive presentation of the fundamentals of scientific computing. This volume discusses basic principles of computation, and fundamental numerical algorithms that will serve as basic tools for the subsequent two volumes. This book and its companions show how to determine the quality of computational results, and how to measure the relative efficiency of competing methods. Readers learn how to determine the maximum attainable accuracy of algorithms, and how to select the best method for computing problems. This book also discusses programming in several languages, including C++, Fortran and MATLAB. There are 80 examples, 324 exercises, 77 algorithms, 35 interactive JavaScript programs, 391 references to software programs and 4 case studies. Topics are introduced with goals, literature references and links to public software. There are descriptions of the current algorithms in LAPACK, GSLIB and MATLAB. This book could be used for an introductory course in numerical methods, for either upper level undergraduates or first year graduate students. Parts of the text could be used for specialized courses, such as principles of computer languages or numerical linear algebra.

Numerical Methods in Scientific Computing:

Numerical Methods in Scientific Computing: PDF Author: Germund Dahlquist
Publisher: SIAM
ISBN: 0898716446
Category : Mathematics
Languages : en
Pages : 741

Get Book Here

Book Description
This work addresses the increasingly important role of numerical methods in science and engineering. It combines traditional and well-developed topics with other material such as interval arithmetic, elementary functions, operator series, convergence acceleration, and continued fractions.

Mathematical Principles for Scientific Computing and Visualization

Mathematical Principles for Scientific Computing and Visualization PDF Author: Gerald Farin
Publisher: CRC Press
ISBN: 156881321X
Category : Mathematics
Languages : en
Pages : 296

Get Book Here

Book Description
This non-traditional introduction to the mathematics of scientific computation describes the principles behind the major methods, from statistics, applied mathematics, scientific visualization, and elsewhere, in a way that is accessible to a large part of the scientific community. Introductory material includes computational basics, a review of coordinate systems, an introduction to facets (planes and triangle meshes) and an introduction to computer graphics. The scientific computing part of the book covers topics in numerical linear algebra (basics, solving linear system, eigen-problems, SVD, and PCA) and numerical calculus (basics, data fitting, dynamic processes, root finding, and multivariate functions). The visualization component of the book is separated into three parts: empirical data, scalar values over 2D data, and volumes.

Numerical Simulations and Case Studies Using Visual C++.Net

Numerical Simulations and Case Studies Using Visual C++.Net PDF Author: Shaharuddin Salleh
Publisher: John Wiley & Sons
ISBN: 0471727245
Category : Technology & Engineering
Languages : en
Pages : 375

Get Book Here

Book Description
Master the numerical simulation process required to design, test and support mobile and parallel computing systems. An accompanying ftp site contains all the Visual C++ based programs discussed in the text to help readers create their own programs. With its focus on problems and solutions, this is an excellent text for upper-level undergraduate and graduate students, and a must-have reference for researchers and professionals in the field of simulations. More information about Visual C++ based programs can be found at: ftp: //ftp.wiley.com/public/sci_tech_med/numerical_simulations/

Computer Science and Scientific Computing

Computer Science and Scientific Computing PDF Author: James M. Ortega
Publisher: Elsevier
ISBN: 1483272486
Category : Computers
Languages : en
Pages : 317

Get Book Here

Book Description
Computer Science and Scientific Computing contains the proceedings of the Third ICASE Conference on Scientific Computing held in Williamsburg, Virginia, on April l and 2, 1976, under the auspices of the Institute for Computer Applications in Systems Engineering at the NASA Langley Research Center. The conference provided a forum for reviewing all the aspects of scientific computing and covered topics ranging from computer-aided design (CAD) and computer science technology to the design of large hydrodynamics codes. Case studies in reliable computing are also presented. Comprised of 13 chapters, this book begins with an introduction to the use of the hierarchical family concept in the development of scientific programming systems. The discussion then turns to the data structures of scientific computing and their representation and management; some important CAD capabilities required to support aerospace design in the areas of interactive support, information management, and computer hardware advances as well as some computer science developments which may contribute significantly to making such capabilities possible; and the use of symbolic computation systems for problem solving in scientific research. Subsequent chapters deal with computer applications in astrophysics; the possibility of computing turbulence and numerical wind tunnels; and the basis for a general-purpose program for finite element analysis. Software tools for computer graphics are also considered. This monograph will be of value to scientists, systems designers and engineers, and students in computer science who have an interest in the subject of scientific computing.

Mastering Python Scientific Computing

Mastering Python Scientific Computing PDF Author: Hemant Kumar Mehta
Publisher: Packt Publishing Ltd
ISBN: 1783288833
Category : Computers
Languages : en
Pages : 301

Get Book Here

Book Description
A complete guide for Python programmers to master scientific computing using Python APIs and tools About This Book The basics of scientific computing to advanced concepts involving parallel and large scale computation are all covered. Most of the Python APIs and tools used in scientific computing are discussed in detail The concepts are discussed with suitable example programs Who This Book Is For If you are a Python programmer and want to get your hands on scientific computing, this book is for you. The book expects you to have had exposure to various concepts of Python programming. What You Will Learn Fundamentals and components of scientific computing Scientific computing data management Performing numerical computing using NumPy and SciPy Concepts and programming for symbolic computing using SymPy Using the plotting library matplotlib for data visualization Data analysis and visualization using Pandas, matplotlib, and IPython Performing parallel and high performance computing Real-life case studies and best practices of scientific computing In Detail In today's world, along with theoretical and experimental work, scientific computing has become an important part of scientific disciplines. Numerical calculations, simulations and computer modeling in this day and age form the vast majority of both experimental and theoretical papers. In the scientific method, replication and reproducibility are two important contributing factors. A complete and concrete scientific result should be reproducible and replicable. Python is suitable for scientific computing. A large community of users, plenty of help and documentation, a large collection of scientific libraries and environments, great performance, and good support makes Python a great choice for scientific computing. At present Python is among the top choices for developing scientific workflow and the book targets existing Python developers to master this domain using Python. The main things to learn in the book are the concept of scientific workflow, managing scientific workflow data and performing computation on this data using Python. The book discusses NumPy, SciPy, SymPy, matplotlib, Pandas and IPython with several example programs. Style and approach This book follows a hands-on approach to explain the complex concepts related to scientific computing. It details various APIs using appropriate examples.

The Practice of Reproducible Research

The Practice of Reproducible Research PDF Author: Justin Kitzes
Publisher: Univ of California Press
ISBN: 0520294742
Category : Computers
Languages : en
Pages : 364

Get Book Here

Book Description
The Practice of Reproducible Research presents concrete examples of how researchers in the data-intensive sciences are working to improve the reproducibility of their research projects. In each of the thirty-one case studies in this volume, the author or team describes the workflow that they used to complete a real-world research project. Authors highlight how they utilized particular tools, ideas, and practices to support reproducibility, emphasizing the very practical how, rather than the why or what, of conducting reproducible research. Part 1 provides an accessible introduction to reproducible research, a basic reproducible research project template, and a synthesis of lessons learned from across the thirty-one case studies. Parts 2 and 3 focus on the case studies themselves. The Practice of Reproducible Research is an invaluable resource for students and researchers who wish to better understand the practice of data-intensive sciences and learn how to make their own research more reproducible.

Scientific Computing

Scientific Computing PDF Author: Michael T. Heath
Publisher: SIAM
ISBN: 1611975581
Category : Mathematics
Languages : en
Pages : 587

Get Book Here

Book Description
This book differs from traditional numerical analysis texts in that it focuses on the motivation and ideas behind the algorithms presented rather than on detailed analyses of them. It presents a broad overview of methods and software for solving mathematical problems arising in computational modeling and data analysis, including proper problem formulation, selection of effective solution algorithms, and interpretation of results. In the 20 years since its original publication, the modern, fundamental perspective of this book has aged well, and it continues to be used in the classroom. This Classics edition has been updated to include pointers to Python software and the Chebfun package, expansions on barycentric formulation for Lagrange polynomial interpretation and stochastic methods, and the availability of about 100 interactive educational modules that dynamically illustrate the concepts and algorithms in the book. Scientific Computing: An Introductory Survey, Second Edition is intended as both a textbook and a reference for computationally oriented disciplines that need to solve mathematical problems.