Author: Richard E. Crandall
Publisher: Springer Science & Business Media
ISBN: 9780387950099
Category : Computers
Languages : en
Pages : 500
Book Description
This interdisciplinary book provides a compendium of projects, plus numerous example programs for readers to study and explore. Designed for advanced undergraduates or graduates of science, mathematics and engineering who will deal with scientific computation in their future studies and research, it also contains new and useful reference materials for researchers. The problem sets range from the tutorial to exploratory and, at times, to "the impossible". The projects were collected from research results and computational dilemmas during the authors tenure as Chief Scientist at NeXT Computer, and from his lectures at Reed College. The content assumes familiarity with such college topics as calculus, differential equations, and at least elementary programming. Each project focuses on computation, theory, graphics, or a combination of these, and is designed with an estimated level of difficulty. The support code for each takes the form of either C or Mathematica, and is included in the appendix and on the bundled diskette. The algorithms are clearly laid out within the projects, such that the book may be used with other symbolic numerical and algebraic manipulation products
Projects in Scientific Computation
Data-Driven Modeling & Scientific Computation
Author: Jose Nathan Kutz
Publisher:
ISBN: 0199660336
Category : Computers
Languages : en
Pages : 657
Book Description
Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.
Publisher:
ISBN: 0199660336
Category : Computers
Languages : en
Pages : 657
Book Description
Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.
Scientific Computation
Author: Gaston H. Gonnet
Publisher: Cambridge University Press
ISBN: 0521849896
Category : Business & Economics
Languages : en
Pages : 251
Book Description
Using real-life applications, this graduate-level textbook introduces different mathematical methods of scientific computation to solve minimization problems using examples ranging from locating an aircraft, finding the best time to replace a computer, analyzing developments on the stock market, and constructing phylogenetic trees. The textbook focuses on several methods, including nonlinear least squares with confidence analysis, singular value decomposition, best basis, dynamic programming, linear programming, and various optimization procedures. Each chapter solves several realistic problems, introducing the modeling optimization techniques and simulation as required. This allows readers to see how the methods are put to use, making it easier to grasp the basic ideas. There are also worked examples, practical notes, and background materials to help the reader understand the topics covered. Interactive exercises are available at www.cambridge.org/9780521849890.
Publisher: Cambridge University Press
ISBN: 0521849896
Category : Business & Economics
Languages : en
Pages : 251
Book Description
Using real-life applications, this graduate-level textbook introduces different mathematical methods of scientific computation to solve minimization problems using examples ranging from locating an aircraft, finding the best time to replace a computer, analyzing developments on the stock market, and constructing phylogenetic trees. The textbook focuses on several methods, including nonlinear least squares with confidence analysis, singular value decomposition, best basis, dynamic programming, linear programming, and various optimization procedures. Each chapter solves several realistic problems, introducing the modeling optimization techniques and simulation as required. This allows readers to see how the methods are put to use, making it easier to grasp the basic ideas. There are also worked examples, practical notes, and background materials to help the reader understand the topics covered. Interactive exercises are available at www.cambridge.org/9780521849890.
An Introduction to High-performance Scientific Computing
Author: Lloyd Dudley Fosdick
Publisher: MIT Press
ISBN: 9780262061810
Category : Computers
Languages : en
Pages : 838
Book Description
Designed for undergraduates, An Introduction to High-Performance Scientific Computing assumes a basic knowledge of numerical computation and proficiency in Fortran or C programming and can be used in any science, computer science, applied mathematics, or engineering department or by practicing scientists and engineers, especially those associated with one of the national laboratories or supercomputer centers. This text evolved from a new curriculum in scientific computing that was developed to teach undergraduate science and engineering majors how to use high-performance computing systems (supercomputers) in scientific and engineering applications. Designed for undergraduates, An Introduction to High-Performance Scientific Computing assumes a basic knowledge of numerical computation and proficiency in Fortran or C programming and can be used in any science, computer science, applied mathematics, or engineering department or by practicing scientists and engineers, especially those associated with one of the national laboratories or supercomputer centers. The authors begin with a survey of scientific computing and then provide a review of background (numerical analysis, IEEE arithmetic, Unix, Fortran) and tools (elements of MATLAB, IDL, AVS). Next, full coverage is given to scientific visualization and to the architectures (scientific workstations and vector and parallel supercomputers) and performance evaluation needed to solve large-scale problems. The concluding section on applications includes three problems (molecular dynamics, advection, and computerized tomography) that illustrate the challenge of solving problems on a variety of computer architectures as well as the suitability of a particular architecture to solving a particular problem. Finally, since this can only be a hands-on course with extensive programming and experimentation with a variety of architectures and programming paradigms, the authors have provided a laboratory manual and supporting software via anonymous ftp. Scientific and Engineering Computation series
Publisher: MIT Press
ISBN: 9780262061810
Category : Computers
Languages : en
Pages : 838
Book Description
Designed for undergraduates, An Introduction to High-Performance Scientific Computing assumes a basic knowledge of numerical computation and proficiency in Fortran or C programming and can be used in any science, computer science, applied mathematics, or engineering department or by practicing scientists and engineers, especially those associated with one of the national laboratories or supercomputer centers. This text evolved from a new curriculum in scientific computing that was developed to teach undergraduate science and engineering majors how to use high-performance computing systems (supercomputers) in scientific and engineering applications. Designed for undergraduates, An Introduction to High-Performance Scientific Computing assumes a basic knowledge of numerical computation and proficiency in Fortran or C programming and can be used in any science, computer science, applied mathematics, or engineering department or by practicing scientists and engineers, especially those associated with one of the national laboratories or supercomputer centers. The authors begin with a survey of scientific computing and then provide a review of background (numerical analysis, IEEE arithmetic, Unix, Fortran) and tools (elements of MATLAB, IDL, AVS). Next, full coverage is given to scientific visualization and to the architectures (scientific workstations and vector and parallel supercomputers) and performance evaluation needed to solve large-scale problems. The concluding section on applications includes three problems (molecular dynamics, advection, and computerized tomography) that illustrate the challenge of solving problems on a variety of computer architectures as well as the suitability of a particular architecture to solving a particular problem. Finally, since this can only be a hands-on course with extensive programming and experimentation with a variety of architectures and programming paradigms, the authors have provided a laboratory manual and supporting software via anonymous ftp. Scientific and Engineering Computation series
Introduction to the Tools of Scientific Computing
Author: Einar Smith
Publisher: Springer Nature
ISBN: 3030608085
Category : Mathematics
Languages : en
Pages : 344
Book Description
The book provides an introduction to common programming tools and methods in numerical mathematics and scientific computing. Unlike widely used standard approaches, it does not focus on any particular language but aims to explain the key underlying concepts. In general, new concepts are first introduced in the particularly user-friendly Python language and then transferred and expanded in various scientific programming environments from C / C ++, Julia and MATLAB to Maple. This includes different approaches to distributed computing. The fact that different languages are studied and compared also makes the book useful for mathematicians and practitioners trying to decide which programming language to use for which purposes.
Publisher: Springer Nature
ISBN: 3030608085
Category : Mathematics
Languages : en
Pages : 344
Book Description
The book provides an introduction to common programming tools and methods in numerical mathematics and scientific computing. Unlike widely used standard approaches, it does not focus on any particular language but aims to explain the key underlying concepts. In general, new concepts are first introduced in the particularly user-friendly Python language and then transferred and expanded in various scientific programming environments from C / C ++, Julia and MATLAB to Maple. This includes different approaches to distributed computing. The fact that different languages are studied and compared also makes the book useful for mathematicians and practitioners trying to decide which programming language to use for which purposes.
Scientific Computing
Author: Michael T. Heath
Publisher: SIAM
ISBN: 1611975573
Category : Science
Languages : en
Pages : 587
Book Description
This book differs from traditional numerical analysis texts in that it focuses on the motivation and ideas behind the algorithms presented rather than on detailed analyses of them. It presents a broad overview of methods and software for solving mathematical problems arising in computational modeling and data analysis, including proper problem formulation, selection of effective solution algorithms, and interpretation of results.? In the 20 years since its original publication, the modern, fundamental perspective of this book has aged well, and it continues to be used in the classroom. This Classics edition has been updated to include pointers to Python software and the Chebfun package, expansions on barycentric formulation for Lagrange polynomial interpretation and stochastic methods, and the availability of about 100 interactive educational modules that dynamically illustrate the concepts and algorithms in the book. Scientific Computing: An Introductory Survey, Second Edition is intended as both a textbook and a reference for computationally oriented disciplines that need to solve mathematical problems.
Publisher: SIAM
ISBN: 1611975573
Category : Science
Languages : en
Pages : 587
Book Description
This book differs from traditional numerical analysis texts in that it focuses on the motivation and ideas behind the algorithms presented rather than on detailed analyses of them. It presents a broad overview of methods and software for solving mathematical problems arising in computational modeling and data analysis, including proper problem formulation, selection of effective solution algorithms, and interpretation of results.? In the 20 years since its original publication, the modern, fundamental perspective of this book has aged well, and it continues to be used in the classroom. This Classics edition has been updated to include pointers to Python software and the Chebfun package, expansions on barycentric formulation for Lagrange polynomial interpretation and stochastic methods, and the availability of about 100 interactive educational modules that dynamically illustrate the concepts and algorithms in the book. Scientific Computing: An Introductory Survey, Second Edition is intended as both a textbook and a reference for computationally oriented disciplines that need to solve mathematical problems.
Scientific Programming and Computer Architecture
Author: Divakar Viswanath
Publisher: MIT Press
ISBN: 0262036290
Category : Computers
Languages : en
Pages : 625
Book Description
A variety of programming models relevant to scientists explained, with an emphasis on how programming constructs map to parts of the computer. What makes computer programs fast or slow? To answer this question, we have to get behind the abstractions of programming languages and look at how a computer really works. This book examines and explains a variety of scientific programming models (programming models relevant to scientists) with an emphasis on how programming constructs map to different parts of the computer's architecture. Two themes emerge: program speed and program modularity. Throughout this book, the premise is to "get under the hood," and the discussion is tied to specific programs. The book digs into linkers, compilers, operating systems, and computer architecture to understand how the different parts of the computer interact with programs. It begins with a review of C/C++ and explanations of how libraries, linkers, and Makefiles work. Programming models covered include Pthreads, OpenMP, MPI, TCP/IP, and CUDA.The emphasis on how computers work leads the reader into computer architecture and occasionally into the operating system kernel. The operating system studied is Linux, the preferred platform for scientific computing. Linux is also open source, which allows users to peer into its inner workings. A brief appendix provides a useful table of machines used to time programs. The book's website (https://github.com/divakarvi/bk-spca) has all the programs described in the book as well as a link to the html text.
Publisher: MIT Press
ISBN: 0262036290
Category : Computers
Languages : en
Pages : 625
Book Description
A variety of programming models relevant to scientists explained, with an emphasis on how programming constructs map to parts of the computer. What makes computer programs fast or slow? To answer this question, we have to get behind the abstractions of programming languages and look at how a computer really works. This book examines and explains a variety of scientific programming models (programming models relevant to scientists) with an emphasis on how programming constructs map to different parts of the computer's architecture. Two themes emerge: program speed and program modularity. Throughout this book, the premise is to "get under the hood," and the discussion is tied to specific programs. The book digs into linkers, compilers, operating systems, and computer architecture to understand how the different parts of the computer interact with programs. It begins with a review of C/C++ and explanations of how libraries, linkers, and Makefiles work. Programming models covered include Pthreads, OpenMP, MPI, TCP/IP, and CUDA.The emphasis on how computers work leads the reader into computer architecture and occasionally into the operating system kernel. The operating system studied is Linux, the preferred platform for scientific computing. Linux is also open source, which allows users to peer into its inner workings. A brief appendix provides a useful table of machines used to time programs. The book's website (https://github.com/divakarvi/bk-spca) has all the programs described in the book as well as a link to the html text.
Topics in Advanced Scientific Computation
Author: Richard E. Crandall
Publisher: Springer
ISBN: 9781461275077
Category : Computers
Languages : en
Pages : 0
Book Description
The major differences between this book and richard's previous title published with TELOS in Jan. '94, are that a) in "Projects" theory was stated, then projects listed as exercises. In "Topics" there will be a set of problems. while the author will refer to some of the more useful algotithms in the "Prjects" text, most algorithms in the "Topics" vilume will be distincly new. Also, b) while "Prjects" in a course book (in context and design) with assigned Problems, "Topics" is inteded as a research reference with stated solutions. The author feels this is an extention of "Projects". "Topics" has a 40-page appendix and no diskette. Finally, the overall style and level of presentation are directed towars the research professional in "Topics", rather than a textbook approach.
Publisher: Springer
ISBN: 9781461275077
Category : Computers
Languages : en
Pages : 0
Book Description
The major differences between this book and richard's previous title published with TELOS in Jan. '94, are that a) in "Projects" theory was stated, then projects listed as exercises. In "Topics" there will be a set of problems. while the author will refer to some of the more useful algotithms in the "Prjects" text, most algorithms in the "Topics" vilume will be distincly new. Also, b) while "Prjects" in a course book (in context and design) with assigned Problems, "Topics" is inteded as a research reference with stated solutions. The author feels this is an extention of "Projects". "Topics" has a 40-page appendix and no diskette. Finally, the overall style and level of presentation are directed towars the research professional in "Topics", rather than a textbook approach.
Scientific Computing with Case Studies
Author: Dianne P. O'Leary
Publisher: SIAM
ISBN: 0898716667
Category : Mathematics
Languages : en
Pages : 376
Book Description
This book is a practical guide to the numerical solution of linear and nonlinear equations, differential equations, optimization problems, and eigenvalue problems. It treats standard problems and introduces important variants such as sparse systems, differential-algebraic equations, constrained optimization, Monte Carlo simulations, and parametric studies. Stability and error analysis are emphasized, and the Matlab algorithms are grounded in sound principles of software design and understanding of machine arithmetic and memory management. Nineteen case studies provide experience in mathematical modeling and algorithm design, motivated by problems in physics, engineering, epidemiology, chemistry, and biology. The topics included go well beyond the standard first-course syllabus, introducing important problems such as differential-algebraic equations and conic optimization problems, and important solution techniques such as continuation methods. The case studies cover a wide variety of fascinating applications, from modeling the spread of an epidemic to determining truss configurations.
Publisher: SIAM
ISBN: 0898716667
Category : Mathematics
Languages : en
Pages : 376
Book Description
This book is a practical guide to the numerical solution of linear and nonlinear equations, differential equations, optimization problems, and eigenvalue problems. It treats standard problems and introduces important variants such as sparse systems, differential-algebraic equations, constrained optimization, Monte Carlo simulations, and parametric studies. Stability and error analysis are emphasized, and the Matlab algorithms are grounded in sound principles of software design and understanding of machine arithmetic and memory management. Nineteen case studies provide experience in mathematical modeling and algorithm design, motivated by problems in physics, engineering, epidemiology, chemistry, and biology. The topics included go well beyond the standard first-course syllabus, introducing important problems such as differential-algebraic equations and conic optimization problems, and important solution techniques such as continuation methods. The case studies cover a wide variety of fascinating applications, from modeling the spread of an epidemic to determining truss configurations.
Stochastic Optimization
Author: Johannes Schneider
Publisher: Springer Science & Business Media
ISBN: 3540345604
Category : Computers
Languages : en
Pages : 551
Book Description
This book addresses stochastic optimization procedures in a broad manner. The first part offers an overview of relevant optimization philosophies; the second deals with benchmark problems in depth, by applying a selection of optimization procedures. Written primarily with scientists and students from the physical and engineering sciences in mind, this book addresses a larger community of all who wish to learn about stochastic optimization techniques and how to use them.
Publisher: Springer Science & Business Media
ISBN: 3540345604
Category : Computers
Languages : en
Pages : 551
Book Description
This book addresses stochastic optimization procedures in a broad manner. The first part offers an overview of relevant optimization philosophies; the second deals with benchmark problems in depth, by applying a selection of optimization procedures. Written primarily with scientists and students from the physical and engineering sciences in mind, this book addresses a larger community of all who wish to learn about stochastic optimization techniques and how to use them.