Author: Vincenzo Ambrosio
Publisher: Springer Nature
ISBN: 3030602206
Category : Mathematics
Languages : en
Pages : 669
Book Description
This monograph presents recent results concerning nonlinear fractional elliptic problems in the whole space. More precisely, it investigates the existence, multiplicity and qualitative properties of solutions for fractional Schrödinger equations by applying suitable variational and topological methods. The book is mainly intended for researchers in pure and applied mathematics, physics, mechanics, and engineering. However, the material will also be useful for students in higher semesters and young researchers, as well as experienced specialists working in the field of nonlocal PDEs. This is the first book to approach fractional nonlinear Schrödinger equations by applying variational and topological methods.
Nonlinear Fractional Schrödinger Equations in R^N
Handbook of Exact Solutions to the Nonlinear Schrödinger Equations (Second Edition)
Author: USAMA. AL KHAWAJA
Publisher: Institute of Physics Publishing
ISBN: 9780750359559
Category : Science
Languages : en
Pages : 0
Book Description
Publisher: Institute of Physics Publishing
ISBN: 9780750359559
Category : Science
Languages : en
Pages : 0
Book Description
The Discrete Nonlinear Schrödinger Equation
Author: Panayotis G. Kevrekidis
Publisher: Springer Science & Business Media
ISBN: 3540891994
Category : Science
Languages : en
Pages : 417
Book Description
This book constitutes the first effort to summarize a large volume of results obtained over the past 20 years in the context of the Discrete Nonlinear Schrödinger equation and the physical settings that it describes.
Publisher: Springer Science & Business Media
ISBN: 3540891994
Category : Science
Languages : en
Pages : 417
Book Description
This book constitutes the first effort to summarize a large volume of results obtained over the past 20 years in the context of the Discrete Nonlinear Schrödinger equation and the physical settings that it describes.
The Nonlinear Schrödinger Equation
Author: Catherine Sulem
Publisher: Springer Science & Business Media
ISBN: 0387227687
Category : Mathematics
Languages : en
Pages : 363
Book Description
Filling the gap between the mathematical literature and applications to domains, the authors have chosen to address the problem of wave collapse by several methods ranging from rigorous mathematical analysis to formal aymptotic expansions and numerical simulations.
Publisher: Springer Science & Business Media
ISBN: 0387227687
Category : Mathematics
Languages : en
Pages : 363
Book Description
Filling the gap between the mathematical literature and applications to domains, the authors have chosen to address the problem of wave collapse by several methods ranging from rigorous mathematical analysis to formal aymptotic expansions and numerical simulations.
Schrödinger Equations in Nonlinear Systems
Author: Wu-Ming Liu
Publisher: Springer
ISBN: 9811365814
Category : Science
Languages : en
Pages : 576
Book Description
This book explores the diverse types of Schrödinger equations that appear in nonlinear systems in general, with a specific focus on nonlinear transmission networks and Bose–Einstein Condensates. In the context of nonlinear transmission networks, it employs various methods to rigorously model the phenomena of modulated matter-wave propagation in the network, leading to nonlinear Schrödinger (NLS) equations. Modeling these phenomena is largely based on the reductive perturbation method, and the derived NLS equations are then used to methodically investigate the dynamics of matter-wave solitons in the network. In the context of Bose–Einstein condensates (BECs), the book analyzes the dynamical properties of NLS equations with the external potential of different types, which govern the dynamics of modulated matter-waves in BECs with either two-body interactions or both two- and three-body interatomic interactions. It also discusses the method of investigating both the well-posedness and the ill-posedness of the boundary problem for linear and nonlinear Schrödinger equations and presents new results. Using simple examples, it then illustrates the results on the boundary problems. For both nonlinear transmission networks and Bose–Einstein condensates, the results obtained are supplemented by numerical calculations and presented as figures.
Publisher: Springer
ISBN: 9811365814
Category : Science
Languages : en
Pages : 576
Book Description
This book explores the diverse types of Schrödinger equations that appear in nonlinear systems in general, with a specific focus on nonlinear transmission networks and Bose–Einstein Condensates. In the context of nonlinear transmission networks, it employs various methods to rigorously model the phenomena of modulated matter-wave propagation in the network, leading to nonlinear Schrödinger (NLS) equations. Modeling these phenomena is largely based on the reductive perturbation method, and the derived NLS equations are then used to methodically investigate the dynamics of matter-wave solitons in the network. In the context of Bose–Einstein condensates (BECs), the book analyzes the dynamical properties of NLS equations with the external potential of different types, which govern the dynamics of modulated matter-waves in BECs with either two-body interactions or both two- and three-body interatomic interactions. It also discusses the method of investigating both the well-posedness and the ill-posedness of the boundary problem for linear and nonlinear Schrödinger equations and presents new results. Using simple examples, it then illustrates the results on the boundary problems. For both nonlinear transmission networks and Bose–Einstein condensates, the results obtained are supplemented by numerical calculations and presented as figures.
Discrete and Continuous Nonlinear Schrödinger Systems
Author: M. J. Ablowitz
Publisher: Cambridge University Press
ISBN: 9780521534376
Category : Mathematics
Languages : en
Pages : 276
Book Description
This book presents a detailed mathematical analysis of scattering theory, obtains soliton solutions, and analyzes soliton interactions, both scalar and vector.
Publisher: Cambridge University Press
ISBN: 9780521534376
Category : Mathematics
Languages : en
Pages : 276
Book Description
This book presents a detailed mathematical analysis of scattering theory, obtains soliton solutions, and analyzes soliton interactions, both scalar and vector.
Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrodinger Equation (AM-154)
Author: Spyridon Kamvissis
Publisher: Princeton University Press
ISBN: 069111482X
Category : Mathematics
Languages : en
Pages : 281
Book Description
Providing an asymptotic analysis via completely integrable techniques, of the initial value problem for the focusing nonlinear Schrodinger equation in the semiclassical asymptotic regime, this text exploits complete integrability to establish pointwise asymptotics for this problem's solution.
Publisher: Princeton University Press
ISBN: 069111482X
Category : Mathematics
Languages : en
Pages : 281
Book Description
Providing an asymptotic analysis via completely integrable techniques, of the initial value problem for the focusing nonlinear Schrodinger equation in the semiclassical asymptotic regime, this text exploits complete integrability to establish pointwise asymptotics for this problem's solution.
Localization & Energy Transfer in Nonlinear Systems
Author: Robert Sinclair MacKay
Publisher: World Scientific
ISBN: 9789812704627
Category : Mathematics
Languages : en
Pages : 372
Book Description
This conference was the third meeting organized in the framework of the European LOCNET project. The main topics discussed by this international research collaboration were localization by nonlinearity and spatial discreteness, and energy transfer (in crystals, biomolecules and Josephson arrays).
Publisher: World Scientific
ISBN: 9789812704627
Category : Mathematics
Languages : en
Pages : 372
Book Description
This conference was the third meeting organized in the framework of the European LOCNET project. The main topics discussed by this international research collaboration were localization by nonlinearity and spatial discreteness, and energy transfer (in crystals, biomolecules and Josephson arrays).
Defocusing Nonlinear Schrödinger Equations
Author: Benjamin Dodson
Publisher: Cambridge University Press
ISBN: 1108681670
Category : Mathematics
Languages : en
Pages : 256
Book Description
This study of Schrödinger equations with power-type nonlinearity provides a great deal of insight into other dispersive partial differential equations and geometric partial differential equations. It presents important proofs, using tools from harmonic analysis, microlocal analysis, functional analysis, and topology. This includes a new proof of Keel–Tao endpoint Strichartz estimates, and a new proof of Bourgain's result for radial, energy-critical NLS. It also provides a detailed presentation of scattering results for energy-critical and mass-critical equations. This book is suitable as the basis for a one-semester course, and serves as a useful introduction to nonlinear Schrödinger equations for those with a background in harmonic analysis, functional analysis, and partial differential equations.
Publisher: Cambridge University Press
ISBN: 1108681670
Category : Mathematics
Languages : en
Pages : 256
Book Description
This study of Schrödinger equations with power-type nonlinearity provides a great deal of insight into other dispersive partial differential equations and geometric partial differential equations. It presents important proofs, using tools from harmonic analysis, microlocal analysis, functional analysis, and topology. This includes a new proof of Keel–Tao endpoint Strichartz estimates, and a new proof of Bourgain's result for radial, energy-critical NLS. It also provides a detailed presentation of scattering results for energy-critical and mass-critical equations. This book is suitable as the basis for a one-semester course, and serves as a useful introduction to nonlinear Schrödinger equations for those with a background in harmonic analysis, functional analysis, and partial differential equations.
Solitons and the Inverse Scattering Transform
Author: Mark J. Ablowitz
Publisher: SIAM
ISBN: 089871477X
Category : Mathematics
Languages : en
Pages : 433
Book Description
A study, by two of the major contributors to the theory, of the inverse scattering transform and its application to problems of nonlinear dispersive waves that arise in fluid dynamics, plasma physics, nonlinear optics, particle physics, crystal lattice theory, nonlinear circuit theory and other areas. A soliton is a localised pulse-like nonlinear wave that possesses remarkable stability properties. Typically, problems that admit soliton solutions are in the form of evolution equations that describe how some variable or set of variables evolve in time from a given state. The equations may take a variety of forms, for example, PDEs, differential difference equations, partial difference equations, and integrodifferential equations, as well as coupled ODEs of finite order. What is surprising is that, although these problems are nonlinear, the general solution that evolves from almost arbitrary initial data may be obtained without approximation.
Publisher: SIAM
ISBN: 089871477X
Category : Mathematics
Languages : en
Pages : 433
Book Description
A study, by two of the major contributors to the theory, of the inverse scattering transform and its application to problems of nonlinear dispersive waves that arise in fluid dynamics, plasma physics, nonlinear optics, particle physics, crystal lattice theory, nonlinear circuit theory and other areas. A soliton is a localised pulse-like nonlinear wave that possesses remarkable stability properties. Typically, problems that admit soliton solutions are in the form of evolution equations that describe how some variable or set of variables evolve in time from a given state. The equations may take a variety of forms, for example, PDEs, differential difference equations, partial difference equations, and integrodifferential equations, as well as coupled ODEs of finite order. What is surprising is that, although these problems are nonlinear, the general solution that evolves from almost arbitrary initial data may be obtained without approximation.