Multistage Stochastic Optimization

Multistage Stochastic Optimization PDF Author: Georg Ch. Pflug
Publisher: Springer
ISBN: 3319088432
Category : Business & Economics
Languages : en
Pages : 309

Get Book Here

Book Description
Multistage stochastic optimization problems appear in many ways in finance, insurance, energy production and trading, logistics and transportation, among other areas. They describe decision situations under uncertainty and with a longer planning horizon. This book contains a comprehensive treatment of today’s state of the art in multistage stochastic optimization. It covers the mathematical backgrounds of approximation theory as well as numerous practical algorithms and examples for the generation and handling of scenario trees. A special emphasis is put on estimation and bounding of the modeling error using novel distance concepts, on time consistency and the role of model ambiguity in the decision process. An extensive treatment of examples from electricity production, asset liability management and inventory control concludes the book.

Multistage Stochastic Optimization

Multistage Stochastic Optimization PDF Author: Georg Ch. Pflug
Publisher: Springer
ISBN: 3319088432
Category : Business & Economics
Languages : en
Pages : 309

Get Book Here

Book Description
Multistage stochastic optimization problems appear in many ways in finance, insurance, energy production and trading, logistics and transportation, among other areas. They describe decision situations under uncertainty and with a longer planning horizon. This book contains a comprehensive treatment of today’s state of the art in multistage stochastic optimization. It covers the mathematical backgrounds of approximation theory as well as numerous practical algorithms and examples for the generation and handling of scenario trees. A special emphasis is put on estimation and bounding of the modeling error using novel distance concepts, on time consistency and the role of model ambiguity in the decision process. An extensive treatment of examples from electricity production, asset liability management and inventory control concludes the book.

Planning Under Uncertainty

Planning Under Uncertainty PDF Author: Gerd Infanger
Publisher: Boyd & Fraser Publishing Company
ISBN:
Category : Business & Economics
Languages : en
Pages : 168

Get Book Here

Book Description


Mathematical Models for Decision Support

Mathematical Models for Decision Support PDF Author: Harvey J. Greenberg
Publisher: Springer Science & Business Media
ISBN: 3642835554
Category : Computers
Languages : en
Pages : 740

Get Book Here

Book Description
It is quite an onerous task to edit the proceedings of a two week long institute with learned contributors from many parts of the world. All the same, the editorial team has found the process of refereeing and reviewing the contributions worthwhile and completing the volume has proven to be a satisfying task. In setting up the institute we had considered models and methods taken from a number of different disciplines. As a result the whole institute - preparing for it, attending it and editing the proceedings - proved to be an intense learning experience for us. Here I speak on behalf of the committee and the editorial team. By the time the institute took place, the papers were delivered and the delegates exchanged their views, the structure of the topics covered and their relative positioning appeared in a different light. In editing the volume I felt compelled to introduce a new structure in grouping the papers. The contents of this volume are organised in eight main sections set out below: 1 . Abstracts. 2. Review Paper. 3. Models with Multiple Criteria and Single or Multiple Decision Makers. 4. Use of Optimisation Models as Decision Support Tools. 5. Role of Information Systems in Decision Making: Database and Model Management Issues. 6. Methods of Artificial Intelligence in Decision Making: Intelligent Knowledge Based Systems. 7. Representation of Uncertainty in Mathematical Models and Knowledge Based Systems. 8. Mathematical Basis for Constructing Models and Model Validation.

Lectures on Stochastic Programming

Lectures on Stochastic Programming PDF Author: Alexander Shapiro
Publisher: SIAM
ISBN: 0898718759
Category : Mathematics
Languages : en
Pages : 447

Get Book Here

Book Description
Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available. Readers will find coverage of the basic concepts of modeling these problems, including recourse actions and the nonanticipativity principle. The book also includes the theory of two-stage and multistage stochastic programming problems; the current state of the theory on chance (probabilistic) constraints, including the structure of the problems, optimality theory, and duality; and statistical inference in and risk-averse approaches to stochastic programming.

Reinforcement Learning and Stochastic Optimization

Reinforcement Learning and Stochastic Optimization PDF Author: Warren B. Powell
Publisher: John Wiley & Sons
ISBN: 1119815037
Category : Mathematics
Languages : en
Pages : 1090

Get Book Here

Book Description
REINFORCEMENT LEARNING AND STOCHASTIC OPTIMIZATION Clearing the jungle of stochastic optimization Sequential decision problems, which consist of “decision, information, decision, information,” are ubiquitous, spanning virtually every human activity ranging from business applications, health (personal and public health, and medical decision making), energy, the sciences, all fields of engineering, finance, and e-commerce. The diversity of applications attracted the attention of at least 15 distinct fields of research, using eight distinct notational systems which produced a vast array of analytical tools. A byproduct is that powerful tools developed in one community may be unknown to other communities. Reinforcement Learning and Stochastic Optimization offers a single canonical framework that can model any sequential decision problem using five core components: state variables, decision variables, exogenous information variables, transition function, and objective function. This book highlights twelve types of uncertainty that might enter any model and pulls together the diverse set of methods for making decisions, known as policies, into four fundamental classes that span every method suggested in the academic literature or used in practice. Reinforcement Learning and Stochastic Optimization is the first book to provide a balanced treatment of the different methods for modeling and solving sequential decision problems, following the style used by most books on machine learning, optimization, and simulation. The presentation is designed for readers with a course in probability and statistics, and an interest in modeling and applications. Linear programming is occasionally used for specific problem classes. The book is designed for readers who are new to the field, as well as those with some background in optimization under uncertainty. Throughout this book, readers will find references to over 100 different applications, spanning pure learning problems, dynamic resource allocation problems, general state-dependent problems, and hybrid learning/resource allocation problems such as those that arose in the COVID pandemic. There are 370 exercises, organized into seven groups, ranging from review questions, modeling, computation, problem solving, theory, programming exercises and a “diary problem” that a reader chooses at the beginning of the book, and which is used as a basis for questions throughout the rest of the book.

Applications of Stochastic Programming

Applications of Stochastic Programming PDF Author: Stein W. Wallace
Publisher: SIAM
ISBN: 9780898718799
Category : Mathematics
Languages : en
Pages : 724

Get Book Here

Book Description
Consisting of two parts, this book presents papers describing publicly available stochastic programming systems that are operational. It presents a diverse collection of application papers in areas such as production, supply chain and scheduling, gaming, environmental and pollution control, financial modeling, telecommunications, and electricity.

Continuous Optimization

Continuous Optimization PDF Author: V. Jeyakumar
Publisher: Springer Science & Business Media
ISBN: 9780387267692
Category : Business & Economics
Languages : en
Pages : 476

Get Book Here

Book Description
The search for the best possible performance is inherent in human nature. Individuals, enterprises and governments all seek optimal—that is, the best—possible solutions of problems that they meet. Evidently, continuous optimization plays an increasingly significant role in everyday management and technical decisions in science, engineering and commerce. The collection of 16 refereed papers in this book covers a diverse number of topics and provides a good picture of recent research in continuous optimization. The first part of the book presents substantive survey articles in a number of important topic areas of continuous optimization. Most of the papers in the second part present results on the theoretical aspects as well as numerical methods of continuous optimization. The papers in the third part are mainly concerned with applications of continuous optimization. Hence, the book will be an additional valuable source of information to faculty, students, and researchers who use continuous optimization to model and solve problems. Audience This book is intended for researchers in mathematical programming, optimization and operations research; engineers in various fields; and graduate students in applied mathematics, engineering and operations research.

Stochastic Decomposition

Stochastic Decomposition PDF Author: Julia L. Higle
Publisher: Springer Science & Business Media
ISBN: 1461541158
Category : Mathematics
Languages : en
Pages : 237

Get Book Here

Book Description
Motivation Stochastic Linear Programming with recourse represents one of the more widely applicable models for incorporating uncertainty within in which the SLP optimization models. There are several arenas model is appropriate, and such models have found applications in air line yield management, capacity planning, electric power generation planning, financial planning, logistics, telecommunications network planning, and many more. In some of these applications, modelers represent uncertainty in terms of only a few seenarios and formulate a large scale linear program which is then solved using LP software. However, there are many applications, such as the telecommunications planning problem discussed in this book, where a handful of seenarios do not capture variability well enough to provide a reasonable model of the actual decision-making problem. Problems of this type easily exceed the capabilities of LP software by several orders of magnitude. Their solution requires the use of algorithmic methods that exploit the structure of the SLP model in a manner that will accommodate large scale applications.

Robust Optimization

Robust Optimization PDF Author: Aharon Ben-Tal
Publisher: Princeton University Press
ISBN: 1400831059
Category : Mathematics
Languages : en
Pages : 565

Get Book Here

Book Description
Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject. Robust optimization is designed to meet some major challenges associated with uncertainty-affected optimization problems: to operate under lack of full information on the nature of uncertainty; to model the problem in a form that can be solved efficiently; and to provide guarantees about the performance of the solution. The book starts with a relatively simple treatment of uncertain linear programming, proceeding with a deep analysis of the interconnections between the construction of appropriate uncertainty sets and the classical chance constraints (probabilistic) approach. It then develops the robust optimization theory for uncertain conic quadratic and semidefinite optimization problems and dynamic (multistage) problems. The theory is supported by numerous examples and computational illustrations. An essential book for anyone working on optimization and decision making under uncertainty, Robust Optimization also makes an ideal graduate textbook on the subject.

Stochastic Programming: Applications In Finance, Energy, Planning And Logistics

Stochastic Programming: Applications In Finance, Energy, Planning And Logistics PDF Author: Horand I Gassmann
Publisher: World Scientific
ISBN: 9814407526
Category : Business & Economics
Languages : en
Pages : 549

Get Book Here

Book Description
This book shows the breadth and depth of stochastic programming applications. All the papers presented here involve optimization over the scenarios that represent possible future outcomes of the uncertainty problems. The applications, which were presented at the 12th International Conference on Stochastic Programming held in Halifax, Nova Scotia in August 2010, span the rich field of uses of these models. The finance papers discuss such diverse problems as longevity risk management of individual investors, personal financial planning, intertemporal surplus management, asset management with benchmarks, dynamic portfolio management, fixed income immunization and racetrack betting. The production and logistics papers discuss natural gas infrastructure design, farming Atlantic salmon, prevention of nuclear smuggling and sawmill planning. The energy papers involve electricity production planning, hydroelectric reservoir operations and power generation planning for liquid natural gas plants. Finally, two telecommunication papers discuss mobile network design and frequency assignment problems./a