Author: Hyongsok T. Soh
Publisher: Springer Science & Business Media
ISBN: 9780792373612
Category : Technology & Engineering
Languages : en
Pages : 226
Book Description
Scanning Probe Lithography (SPL) describes recent advances in the field of scanning probe lithography, a high resolution patterning technique that uses a sharp tip in close proximity to a sample to pattern nanometer-scale features on the sample. SPL is capable of patterning sub-30nm features with nanometer-scale alignment registration. It is a relatively simple, inexpensive, reliable method for patterning nanometer-scale features on various substrates. It has potential applications for nanometer-scale research, for maskless semiconductor lithography, and for photomask patterning. The authors of this book have been key players in this exciting new field. Calvin Quate has been involved since the beginning in the early 1980s and leads the research time that is regarded as the foremost group in this field. Hyongsok Tom Soh and Kathryn Wilder Guarini have been the members of this group who, in the last few years, have brought about remarkable series of advances in SPM lithography. Some of these advances have been in the control of the tip which has allowed the scanning speed to be increased from mum/second to mm/second. Both non-contact and in-contact writing have been demonstrated as has controlled writing of sub-100 nm lines over large steps on the substrate surface. The engineering of a custom-designed MOSFET built into each microcantilever for individual current control is another notable achievement. Micromachined arrays of probes each with individual control have been demonstrated. One of the most intriguing new aspects is the use of directly-grown carbon nanotubes as robust, high-resolution emitters. In this book the authors concisely and authoritatively describe the historical context, the relevant inventions, and the prospects for eventual manufacturing use of this exciting new technology.
Scanning Probe Lithography
Author: Hyongsok T. Soh
Publisher: Springer Science & Business Media
ISBN: 9780792373612
Category : Technology & Engineering
Languages : en
Pages : 226
Book Description
Scanning Probe Lithography (SPL) describes recent advances in the field of scanning probe lithography, a high resolution patterning technique that uses a sharp tip in close proximity to a sample to pattern nanometer-scale features on the sample. SPL is capable of patterning sub-30nm features with nanometer-scale alignment registration. It is a relatively simple, inexpensive, reliable method for patterning nanometer-scale features on various substrates. It has potential applications for nanometer-scale research, for maskless semiconductor lithography, and for photomask patterning. The authors of this book have been key players in this exciting new field. Calvin Quate has been involved since the beginning in the early 1980s and leads the research time that is regarded as the foremost group in this field. Hyongsok Tom Soh and Kathryn Wilder Guarini have been the members of this group who, in the last few years, have brought about remarkable series of advances in SPM lithography. Some of these advances have been in the control of the tip which has allowed the scanning speed to be increased from mum/second to mm/second. Both non-contact and in-contact writing have been demonstrated as has controlled writing of sub-100 nm lines over large steps on the substrate surface. The engineering of a custom-designed MOSFET built into each microcantilever for individual current control is another notable achievement. Micromachined arrays of probes each with individual control have been demonstrated. One of the most intriguing new aspects is the use of directly-grown carbon nanotubes as robust, high-resolution emitters. In this book the authors concisely and authoritatively describe the historical context, the relevant inventions, and the prospects for eventual manufacturing use of this exciting new technology.
Publisher: Springer Science & Business Media
ISBN: 9780792373612
Category : Technology & Engineering
Languages : en
Pages : 226
Book Description
Scanning Probe Lithography (SPL) describes recent advances in the field of scanning probe lithography, a high resolution patterning technique that uses a sharp tip in close proximity to a sample to pattern nanometer-scale features on the sample. SPL is capable of patterning sub-30nm features with nanometer-scale alignment registration. It is a relatively simple, inexpensive, reliable method for patterning nanometer-scale features on various substrates. It has potential applications for nanometer-scale research, for maskless semiconductor lithography, and for photomask patterning. The authors of this book have been key players in this exciting new field. Calvin Quate has been involved since the beginning in the early 1980s and leads the research time that is regarded as the foremost group in this field. Hyongsok Tom Soh and Kathryn Wilder Guarini have been the members of this group who, in the last few years, have brought about remarkable series of advances in SPM lithography. Some of these advances have been in the control of the tip which has allowed the scanning speed to be increased from mum/second to mm/second. Both non-contact and in-contact writing have been demonstrated as has controlled writing of sub-100 nm lines over large steps on the substrate surface. The engineering of a custom-designed MOSFET built into each microcantilever for individual current control is another notable achievement. Micromachined arrays of probes each with individual control have been demonstrated. One of the most intriguing new aspects is the use of directly-grown carbon nanotubes as robust, high-resolution emitters. In this book the authors concisely and authoritatively describe the historical context, the relevant inventions, and the prospects for eventual manufacturing use of this exciting new technology.
Scanning Probe Lithography
Author: Hyongsok T. Soh
Publisher: Springer Science & Business Media
ISBN: 1475733313
Category : Technology & Engineering
Languages : en
Pages : 212
Book Description
Scanning Probe Lithography (SPL) describes recent advances in the field of scanning probe lithography, a high resolution patterning technique that uses a sharp tip in close proximity to a sample to pattern nanometer-scale features on the sample. SPL is capable of patterning sub-30nm features with nanometer-scale alignment registration. It is a relatively simple, inexpensive, reliable method for patterning nanometer-scale features on various substrates. It has potential applications for nanometer-scale research, for maskless semiconductor lithography, and for photomask patterning. The authors of this book have been key players in this exciting new field. Calvin Quate has been involved since the beginning in the early 1980s and leads the research time that is regarded as the foremost group in this field. Hyongsok Tom Soh and Kathryn Wilder Guarini have been the members of this group who, in the last few years, have brought about remarkable series of advances in SPM lithography. Some of these advances have been in the control of the tip which has allowed the scanning speed to be increased from mum/second to mm/second. Both non-contact and in-contact writing have been demonstrated as has controlled writing of sub-100 nm lines over large steps on the substrate surface. The engineering of a custom-designed MOSFET built into each microcantilever for individual current control is another notable achievement. Micromachined arrays of probes each with individual control have been demonstrated. One of the most intriguing new aspects is the use of directly-grown carbon nanotubes as robust, high-resolution emitters. In this book the authors concisely and authoritatively describe the historical context, the relevant inventions, and the prospects for eventual manufacturing use of this exciting new technology.
Publisher: Springer Science & Business Media
ISBN: 1475733313
Category : Technology & Engineering
Languages : en
Pages : 212
Book Description
Scanning Probe Lithography (SPL) describes recent advances in the field of scanning probe lithography, a high resolution patterning technique that uses a sharp tip in close proximity to a sample to pattern nanometer-scale features on the sample. SPL is capable of patterning sub-30nm features with nanometer-scale alignment registration. It is a relatively simple, inexpensive, reliable method for patterning nanometer-scale features on various substrates. It has potential applications for nanometer-scale research, for maskless semiconductor lithography, and for photomask patterning. The authors of this book have been key players in this exciting new field. Calvin Quate has been involved since the beginning in the early 1980s and leads the research time that is regarded as the foremost group in this field. Hyongsok Tom Soh and Kathryn Wilder Guarini have been the members of this group who, in the last few years, have brought about remarkable series of advances in SPM lithography. Some of these advances have been in the control of the tip which has allowed the scanning speed to be increased from mum/second to mm/second. Both non-contact and in-contact writing have been demonstrated as has controlled writing of sub-100 nm lines over large steps on the substrate surface. The engineering of a custom-designed MOSFET built into each microcantilever for individual current control is another notable achievement. Micromachined arrays of probes each with individual control have been demonstrated. One of the most intriguing new aspects is the use of directly-grown carbon nanotubes as robust, high-resolution emitters. In this book the authors concisely and authoritatively describe the historical context, the relevant inventions, and the prospects for eventual manufacturing use of this exciting new technology.
Scanning Probe Lithography
Author: Yu Kyoung Ryu
Publisher: CRC Press
ISBN: 1000804860
Category : Technology & Engineering
Languages : en
Pages : 145
Book Description
The most complete book available on scanning probe lithography (SPL), this work details the modalities, mechanisms, and current technologies, applications, and materials on which SPL can be performed. It provides a comprehensive overview of this simple and cost-effective technique, which does not require clean room conditions and can be performed in any lab or industry facility to achieve high-resolution and high-quality patterns on a wide range of materials: biological, semiconducting, polymers, and 2D materials. • Introduces historical background of SPL, including evolution of the technique and tools • Explains the mechanism of sample modification/manipulation, types of AFM tips, technical parts of the experimental setup, and materials on which the technique can be applied • Shows the different types of devices and structures fabricated by SPL, together with the processing steps • Contains a complete and state-of-the art package of examples and different approaches, performed by different international research groups • Summarizes strengths, limitations, and potential of SPL This book is aimed at advanced students, technicians, and researchers in materials science, microelectronics, and others working with lithographic techniques and fabrication processes.
Publisher: CRC Press
ISBN: 1000804860
Category : Technology & Engineering
Languages : en
Pages : 145
Book Description
The most complete book available on scanning probe lithography (SPL), this work details the modalities, mechanisms, and current technologies, applications, and materials on which SPL can be performed. It provides a comprehensive overview of this simple and cost-effective technique, which does not require clean room conditions and can be performed in any lab or industry facility to achieve high-resolution and high-quality patterns on a wide range of materials: biological, semiconducting, polymers, and 2D materials. • Introduces historical background of SPL, including evolution of the technique and tools • Explains the mechanism of sample modification/manipulation, types of AFM tips, technical parts of the experimental setup, and materials on which the technique can be applied • Shows the different types of devices and structures fabricated by SPL, together with the processing steps • Contains a complete and state-of-the art package of examples and different approaches, performed by different international research groups • Summarizes strengths, limitations, and potential of SPL This book is aimed at advanced students, technicians, and researchers in materials science, microelectronics, and others working with lithographic techniques and fabrication processes.
Materials and Processes for Next Generation Lithography
Author:
Publisher: Elsevier
ISBN: 0081003587
Category : Science
Languages : en
Pages : 636
Book Description
As the requirements of the semiconductor industry have become more demanding in terms of resolution and speed it has been necessary to push photoresist materials far beyond the capabilities previously envisioned. Currently there is significant worldwide research effort in to so called Next Generation Lithography techniques such as EUV lithography and multibeam electron beam lithography. These developments in both the industrial and the academic lithography arenas have led to the proliferation of numerous novel approaches to resist chemistry and ingenious extensions of traditional photopolymers. Currently most texts in this area focus on either lithography with perhaps one or two chapters on resists, or on traditional resist materials with relatively little consideration of new approaches. This book therefore aims to bring together the worlds foremost resist development scientists from the various community to produce in one place a definitive description of the many approaches to lithography fabrication. - Assembles up-to-date information from the world's premier resist chemists and technique development lithographers on the properties and capabilities of the wide range of resist materials currently under investigation - Includes information on processing and metrology techniques - Brings together multiple approaches to litho pattern recording from academia and industry in one place
Publisher: Elsevier
ISBN: 0081003587
Category : Science
Languages : en
Pages : 636
Book Description
As the requirements of the semiconductor industry have become more demanding in terms of resolution and speed it has been necessary to push photoresist materials far beyond the capabilities previously envisioned. Currently there is significant worldwide research effort in to so called Next Generation Lithography techniques such as EUV lithography and multibeam electron beam lithography. These developments in both the industrial and the academic lithography arenas have led to the proliferation of numerous novel approaches to resist chemistry and ingenious extensions of traditional photopolymers. Currently most texts in this area focus on either lithography with perhaps one or two chapters on resists, or on traditional resist materials with relatively little consideration of new approaches. This book therefore aims to bring together the worlds foremost resist development scientists from the various community to produce in one place a definitive description of the many approaches to lithography fabrication. - Assembles up-to-date information from the world's premier resist chemists and technique development lithographers on the properties and capabilities of the wide range of resist materials currently under investigation - Includes information on processing and metrology techniques - Brings together multiple approaches to litho pattern recording from academia and industry in one place
Nanofabrication
Author: Ampere A. Tseng
Publisher: World Scientific
ISBN: 9812700765
Category : Science
Languages : en
Pages : 583
Book Description
Many of the devices and systems used in modern industry are becoming progressively smaller and have reached the nanoscale domain. Nanofabrication aims at building nanoscale structures, which can act as components, devices, or systems, in large quantities at potentially low cost. Nanofabrication is vital to all nanotechnology fields, especially for the realization of nanotechnology that involves the traditional areas across engineering and science. This is the first book solely dedicated to the manufacturing technology in nanoscale structures, devices, and systems and is designed to satisfy the growing demands of researchers, professionals, and graduate students.Both conventional and non-conventional fabrication technologies are introduced with emphasis on multidisciplinary principles, methodologies, and practical applications. While conventional technologies consider the emerging techniques developed for next generation lithography, non-conventional techniques include scanning probe microscopy lithography, self-assembly, and imprint lithography, as well as techniques specifically developed for making carbon tubes and molecular circuits and devices.
Publisher: World Scientific
ISBN: 9812700765
Category : Science
Languages : en
Pages : 583
Book Description
Many of the devices and systems used in modern industry are becoming progressively smaller and have reached the nanoscale domain. Nanofabrication aims at building nanoscale structures, which can act as components, devices, or systems, in large quantities at potentially low cost. Nanofabrication is vital to all nanotechnology fields, especially for the realization of nanotechnology that involves the traditional areas across engineering and science. This is the first book solely dedicated to the manufacturing technology in nanoscale structures, devices, and systems and is designed to satisfy the growing demands of researchers, professionals, and graduate students.Both conventional and non-conventional fabrication technologies are introduced with emphasis on multidisciplinary principles, methodologies, and practical applications. While conventional technologies consider the emerging techniques developed for next generation lithography, non-conventional techniques include scanning probe microscopy lithography, self-assembly, and imprint lithography, as well as techniques specifically developed for making carbon tubes and molecular circuits and devices.
Scanning Probe Microscopy in Nanoscience and Nanotechnology 3
Author: Bharat Bhushan
Publisher: Springer Science & Business Media
ISBN: 3642254136
Category : Science
Languages : en
Pages : 634
Book Description
This book presents the physical and technical foundation of the state of the art in applied scanning probe techniques. It constitutes a timely and comprehensive overview of SPM applications. The chapters in this volume relate to scanning probe microscopy techniques, characterization of various materials and structures and typical industrial applications, including topographic and dynamical surface studies of thin-film semiconductors, polymers, paper, ceramics, and magnetic and biological materials. The chapters are written by leading researchers and application scientists from all over the world and from various industries to provide a broader perspective.
Publisher: Springer Science & Business Media
ISBN: 3642254136
Category : Science
Languages : en
Pages : 634
Book Description
This book presents the physical and technical foundation of the state of the art in applied scanning probe techniques. It constitutes a timely and comprehensive overview of SPM applications. The chapters in this volume relate to scanning probe microscopy techniques, characterization of various materials and structures and typical industrial applications, including topographic and dynamical surface studies of thin-film semiconductors, polymers, paper, ceramics, and magnetic and biological materials. The chapters are written by leading researchers and application scientists from all over the world and from various industries to provide a broader perspective.
Electrical Atomic Force Microscopy for Nanoelectronics
Author: Umberto Celano
Publisher: Springer
ISBN: 3030156125
Category : Science
Languages : en
Pages : 424
Book Description
The tremendous impact of electronic devices on our lives is the result of continuous improvements of the billions of nanoelectronic components inside integrated circuits (ICs). However, ultra-scaled semiconductor devices require nanometer control of the many parameters essential for their fabrication. Through the years, this created a strong alliance between microscopy techniques and IC manufacturing. This book reviews the latest progress in IC devices, with emphasis on the impact of electrical atomic force microscopy (AFM) techniques for their development. The operation principles of many techniques are introduced, and the associated metrology challenges described. Blending the expertise of industrial specialists and academic researchers, the chapters are dedicated to various AFM methods and their impact on the development of emerging nanoelectronic devices. The goal is to introduce the major electrical AFM methods, following the journey that has seen our lives changed by the advent of ubiquitous nanoelectronics devices, and has extended our capability to sense matter on a scale previously inaccessible.
Publisher: Springer
ISBN: 3030156125
Category : Science
Languages : en
Pages : 424
Book Description
The tremendous impact of electronic devices on our lives is the result of continuous improvements of the billions of nanoelectronic components inside integrated circuits (ICs). However, ultra-scaled semiconductor devices require nanometer control of the many parameters essential for their fabrication. Through the years, this created a strong alliance between microscopy techniques and IC manufacturing. This book reviews the latest progress in IC devices, with emphasis on the impact of electrical atomic force microscopy (AFM) techniques for their development. The operation principles of many techniques are introduced, and the associated metrology challenges described. Blending the expertise of industrial specialists and academic researchers, the chapters are dedicated to various AFM methods and their impact on the development of emerging nanoelectronic devices. The goal is to introduce the major electrical AFM methods, following the journey that has seen our lives changed by the advent of ubiquitous nanoelectronics devices, and has extended our capability to sense matter on a scale previously inaccessible.
Nanofabrication
Author: José María de Teresa
Publisher:
ISBN: 9780750326087
Category : Nanolithography
Languages : en
Pages : 0
Book Description
A comprehensive edited volume on important and up-to-date nanolithography techniques and applications. The book includes an introduction on the importance of nanolithography in today's research and technology, providing examples of its applications. The remainder of the book is split into two sections. The first section contains the most important and established nanolithography techniques. As well as a detailed description of each technique, the reader can obtain useful information about the main advantages and drawbacks of each technique in terms of resolution, throughput, number of steps needed, cost, etc. At the end of this section, the reader will be able to decide which technique to use for different applications. The second section explores more specific applications of the nanolithography techniques previously described; as well as new techniques and applications. In some cases, the processes described in these chapters involve a combination of several nanolithography techniques. This section is less general but provides the reader with real examples.
Publisher:
ISBN: 9780750326087
Category : Nanolithography
Languages : en
Pages : 0
Book Description
A comprehensive edited volume on important and up-to-date nanolithography techniques and applications. The book includes an introduction on the importance of nanolithography in today's research and technology, providing examples of its applications. The remainder of the book is split into two sections. The first section contains the most important and established nanolithography techniques. As well as a detailed description of each technique, the reader can obtain useful information about the main advantages and drawbacks of each technique in terms of resolution, throughput, number of steps needed, cost, etc. At the end of this section, the reader will be able to decide which technique to use for different applications. The second section explores more specific applications of the nanolithography techniques previously described; as well as new techniques and applications. In some cases, the processes described in these chapters involve a combination of several nanolithography techniques. This section is less general but provides the reader with real examples.
Scanning Probe Microscopy
Author: Nikodem Tomczak
Publisher: World Scientific
ISBN: 9814324760
Category : Science
Languages : en
Pages : 277
Book Description
Scanning Probe Microscopy (SPM) is the enabling tool for nano(bio)technology, which has opened new vistas in many interdisciplinary research areas. Concomitant with the developments in SPM instrumentation and techniques are new and previously unthought-of opportunities in materials nanofabrication and characterisation. In particular, the developments in addressing and manipulating matter at the level of single atoms or molecules, and studies of biological materials (e.g. live cells, or cell membranes) result in new and exciting discoveries. The rising importance of SPM demands a concise treatment in the form of a book which is accessible to interdisciplinary practitioners. This book highlights recent advances in the field of SPM with sufficient depth and breadth to provide an intellectually stimulating overview of the current state of the art. The book is based on a set of carefully selected original works from renowned contributors on topics that range from atom technology, scanning tunneling spectroscopy of self-assembled nanostructures, SPM probe fabrication, scanning force microscopy applications in biology and materials science down to the single molecule level, novel scanning probe techniques, and nanolithography. The variety of topics underlines the strong interdisciplinary character of SPM related research and the combined expertise of the contributors gives us a unique opportunity to discuss possible future trends in SPM related research. This makes the book not merely a collection of already published material but an enlightening insight into cutting edge research and global SPM research trends.
Publisher: World Scientific
ISBN: 9814324760
Category : Science
Languages : en
Pages : 277
Book Description
Scanning Probe Microscopy (SPM) is the enabling tool for nano(bio)technology, which has opened new vistas in many interdisciplinary research areas. Concomitant with the developments in SPM instrumentation and techniques are new and previously unthought-of opportunities in materials nanofabrication and characterisation. In particular, the developments in addressing and manipulating matter at the level of single atoms or molecules, and studies of biological materials (e.g. live cells, or cell membranes) result in new and exciting discoveries. The rising importance of SPM demands a concise treatment in the form of a book which is accessible to interdisciplinary practitioners. This book highlights recent advances in the field of SPM with sufficient depth and breadth to provide an intellectually stimulating overview of the current state of the art. The book is based on a set of carefully selected original works from renowned contributors on topics that range from atom technology, scanning tunneling spectroscopy of self-assembled nanostructures, SPM probe fabrication, scanning force microscopy applications in biology and materials science down to the single molecule level, novel scanning probe techniques, and nanolithography. The variety of topics underlines the strong interdisciplinary character of SPM related research and the combined expertise of the contributors gives us a unique opportunity to discuss possible future trends in SPM related research. This makes the book not merely a collection of already published material but an enlightening insight into cutting edge research and global SPM research trends.
An Introduction to Metamaterials and Nanophotonics
Author: Constantin Simovski
Publisher: Cambridge University Press
ISBN: 1108492649
Category : Science
Languages : en
Pages : 349
Book Description
This book offers a unified presentation of metamaterials building from fundamental nanophotonic principles.
Publisher: Cambridge University Press
ISBN: 1108492649
Category : Science
Languages : en
Pages : 349
Book Description
This book offers a unified presentation of metamaterials building from fundamental nanophotonic principles.