Scanning Electron Microscopy, Computer Control and Image Processing

Scanning Electron Microscopy, Computer Control and Image Processing PDF Author: David Whitehead Robinson
Publisher:
ISBN:
Category :
Languages : en
Pages : 464

Get Book Here

Book Description

Scanning Electron Microscopy, Computer Control and Image Processing

Scanning Electron Microscopy, Computer Control and Image Processing PDF Author: David Whitehead Robinson
Publisher:
ISBN:
Category :
Languages : en
Pages : 464

Get Book Here

Book Description


Computer Control of a Scanning Electron Microscope for Digital Image Processing of Thermal-wave Images

Computer Control of a Scanning Electron Microscope for Digital Image Processing of Thermal-wave Images PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 20

Get Book Here

Book Description


Computer Techniques for Image Processing in Electron Microscopy

Computer Techniques for Image Processing in Electron Microscopy PDF Author: W. O. Saxton
Publisher: Academic Press
ISBN: 1483284646
Category : Science
Languages : en
Pages : 302

Get Book Here

Book Description
Computer Techniques for Image Processing in Electron Microscopy: Advances in Electronics and Electron Physics presents the sophisticated computer generated in processing the image. This book discusses the development of fast Fourier transform algorithms, which has led to the possibility of achieving a more reliable interpretation of electron micrographs by digital means. Organized into 10 chapters, this book begins with an overview of image formation in which the properties of the linear approximation are included. This text then reviews the available hardware and the basic mathematical methods of image processing in electron microscopy. Other chapters consider the constraints imposed on the image wave function by the objective lens aperture. This book discusses as well the properties of discrete Fourier transforms. The final chapter deals with a particular processing system called the Improc system. This book is a valuable resource for physicists and researcher workers who are interested in the study of image processing.

Springer Handbook of Microscopy

Springer Handbook of Microscopy PDF Author: Peter W. Hawkes
Publisher: Springer Nature
ISBN: 3030000699
Category : Technology & Engineering
Languages : en
Pages : 1561

Get Book Here

Book Description
This book features reviews by leading experts on the methods and applications of modern forms of microscopy. The recent awards of Nobel Prizes awarded for super-resolution optical microscopy and cryo-electron microscopy have demonstrated the rich scientific opportunities for research in novel microscopies. Earlier Nobel Prizes for electron microscopy (the instrument itself and applications to biology), scanning probe microscopy and holography are a reminder of the central role of microscopy in modern science, from the study of nanostructures in materials science, physics and chemistry to structural biology. Separate chapters are devoted to confocal, fluorescent and related novel optical microscopies, coherent diffractive imaging, scanning probe microscopy, transmission electron microscopy in all its modes from aberration corrected and analytical to in-situ and time-resolved, low energy electron microscopy, photoelectron microscopy, cryo-electron microscopy in biology, and also ion microscopy. In addition to serving as an essential reference for researchers and teachers in the fields such as materials science, condensed matter physics, solid-state chemistry, structural biology and the molecular sciences generally, the Springer Handbook of Microscopy is a unified, coherent and pedagogically attractive text for advanced students who need an authoritative yet accessible guide to the science and practice of microscopy.

Computer-Assisted Microscopy

Computer-Assisted Microscopy PDF Author: John C. Russ
Publisher: Springer Science & Business Media
ISBN: 1461305632
Category : Science
Languages : en
Pages : 461

Get Book Here

Book Description
The use of computer-based image analysis systems for all kinds of images, but especially for microscope images, has become increasingly widespread in recent years, as computer power has increased and costs have dropped. Software to perform each of the various tasks described in this book exists now, and without doubt additional algorithms to accomplish these same things more efficiently, and to perform new kinds of image processing, feature discrimination and measurement, will continue to be developed. This is likely to be true particularly in the field of three-dimensional imaging, since new microscopy methods are beginning to be used which can produce such data. It is not the intent of this book to train programmers who will assemble their own computer systems and write their own programs. Most users require only the barest of knowledge about how to use the computer, but the greater their understanding of the various image analysis operations which are possible, their advantages and limitations, the greater the likelihood of success in their application. Likewise, the book assumes little in the way of a mathematical background, but the researcher with a secure knowledge of appropriate statistical tests will find it easier to put some of these methods into real use, and have confidence in the results, than one who has less background and experience. Supplementary texts and courses in statistics, microscopy, and specimen preparation are recommended as necessary.

Advanced Computing in Electron Microscopy

Advanced Computing in Electron Microscopy PDF Author: Earl J. Kirkland
Publisher: Springer Nature
ISBN: 3030332608
Category : Science
Languages : en
Pages : 357

Get Book Here

Book Description
This updated and revised edition of a classic work provides a summary of methods for numerical computation of high resolution conventional and scanning transmission electron microscope images. At the limits of resolution, image artifacts due to the instrument and the specimen interaction can complicate image interpretation. Image calculations can help the user to interpret and understand high resolution information in recorded electron micrographs. The book contains expanded sections on aberration correction, including a detailed discussion of higher order (multipole) aberrations and their effect on high resolution imaging, new imaging modes such as ABF (annular bright field), and the latest developments in parallel processing using GPUs (graphic processing units), as well as updated references. Beginning and experienced users at the advanced undergraduate or graduate level will find the book to be a unique and essential guide to the theory and methods of computation in electron microscopy.

Scanning Electron Microscopy and X-Ray Microanalysis

Scanning Electron Microscopy and X-Ray Microanalysis PDF Author: Joseph I. Goldstein
Publisher: Springer
ISBN: 1493966766
Category : Technology & Engineering
Languages : en
Pages : 554

Get Book Here

Book Description
This thoroughly revised and updated Fourth Edition of a time-honored text provides the reader with a comprehensive introduction to the field of scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS) for elemental microanalysis, electron backscatter diffraction analysis (EBSD) for micro-crystallography, and focused ion beams. Students and academic researchers will find the text to be an authoritative and scholarly resource, while SEM operators and a diversity of practitioners — engineers, technicians, physical and biological scientists, clinicians, and technical managers — will find that every chapter has been overhauled to meet the more practical needs of the technologist and working professional. In a break with the past, this Fourth Edition de-emphasizes the design and physical operating basis of the instrumentation, including the electron sources, lenses, detectors, etc. In the modern SEM, many of the low level instrument parameters are now controlled and optimized by the microscope’s software, and user access is restricted. Although the software control system provides efficient and reproducible microscopy and microanalysis, the user must understand the parameter space wherein choices are made to achieve effective and meaningful microscopy, microanalysis, and micro-crystallography. Therefore, special emphasis is placed on beam energy, beam current, electron detector characteristics and controls, and ancillary techniques such as energy dispersive x-ray spectrometry (EDS) and electron backscatter diffraction (EBSD). With 13 years between the publication of the third and fourth editions, new coverage reflects the many improvements in the instrument and analysis techniques. The SEM has evolved into a powerful and versatile characterization platform in which morphology, elemental composition, and crystal structure can be evaluated simultaneously. Extension of the SEM into a "dual beam" platform incorporating both electron and ion columns allows precision modification of the specimen by focused ion beam milling. New coverage in the Fourth Edition includes the increasing use of field emission guns and SEM instruments with high resolution capabilities, variable pressure SEM operation, theory, and measurement of x-rays with high throughput silicon drift detector (SDD-EDS) x-ray spectrometers. In addition to powerful vendor- supplied software to support data collection and processing, the microscopist can access advanced capabilities available in free, open source software platforms, including the National Institutes of Health (NIH) ImageJ-Fiji for image processing and the National Institute of Standards and Technology (NIST) DTSA II for quantitative EDS x-ray microanalysis and spectral simulation, both of which are extensively used in this work. However, the user has a responsibility to bring intellect, curiosity, and a proper skepticism to information on a computer screen and to the entire measurement process. This book helps you to achieve this goal. Realigns the text with the needs of a diverse audience from researchers and graduate students to SEM operators and technical managers Emphasizes practical, hands-on operation of the microscope, particularly user selection of the critical operating parameters to achieve meaningful results Provides step-by-step overviews of SEM, EDS, and EBSD and checklists of critical issues for SEM imaging, EDS x-ray microanalysis, and EBSD crystallographic measurements Makes extensive use of open source software: NIH ImageJ-FIJI for image processing and NIST DTSA II for quantitative EDS x-ray microanalysis and EDS spectral simulation. Includes case studies to illustrate practical problem solving Covers Helium ion scanning microscopy Organized into relatively self-contained modules – no need to "read it all" to understand a topic Includes an online supplement—an extensive "Database of Electron–Solid Interactions"—which can be accessed on SpringerLink, in Chapter 3

Computer Processing of Electron Microscope Images

Computer Processing of Electron Microscope Images PDF Author: P. W. Hawkes
Publisher: Springer Science & Business Media
ISBN: 364281381X
Category : Science
Languages : en
Pages : 307

Get Book Here

Book Description
Towards the end of the 1960s, a number of quite different circumstances combined to launch a period of intense activity in the digital processing of electron micro graphs. First, many years of work on correcting the resolution-limiting aberrations of electron microscope objectives had shown that these optical impediments to very high resolution could indeed be overcome, but only at the cost of immense exper imental difficulty; thanks largely to the theoretical work of K. -J. Hanszen and his colleagues and to the experimental work of F. Thon, the notions of transfer func tions were beginning to supplant or complement the concepts of geometrical optics in electron optical thinking; and finally, large fast computers, capable of manipu lating big image matrices in a reasonable time, were widely accessible. Thus the idea that recorded electron microscope images could be improved in some way or rendered more informative by subsequent computer processing gradually gained ground. At first, most effort was concentrated on three-dimensional reconstruction, particu larly of specimens with natural symmetry that could be exploited, and on linear operations on weakly scattering specimens (Chap. l). In 1973, however, R. W. Gerchberg and W. O. Saxton described an iterative algorithm that in principle yielded the phase and amplitude of the electron wave emerging from a strongly scattering speci men.

Computer Vision in Advanced Control Systems-5

Computer Vision in Advanced Control Systems-5 PDF Author: Margarita N. Favorskaya
Publisher: Springer Nature
ISBN: 3030337952
Category : Technology & Engineering
Languages : en
Pages : 329

Get Book Here

Book Description
This book applies novel theories to improve algorithms in complex data analysis in various fields, including object detection, remote sensing, data transmission, data fusion, gesture recognition, and medical image processing and analysis. It is intended for Ph.D. students, academics, researchers, and software developers working in the areas of digital video processing and computer vision technologies.

Scanning Electron Microscopy and X-Ray Microanalysis

Scanning Electron Microscopy and X-Ray Microanalysis PDF Author: Joseph Goldstein
Publisher: Springer Science & Business Media
ISBN: 1461332737
Category : Science
Languages : en
Pages : 679

Get Book Here

Book Description
This book has evolved by processes of selection and expansion from its predecessor, Practical Scanning Electron Microscopy (PSEM), published by Plenum Press in 1975. The interaction of the authors with students at the Short Course on Scanning Electron Microscopy and X-Ray Microanalysis held annually at Lehigh University has helped greatly in developing this textbook. The material has been chosen to provide a student with a general introduction to the techniques of scanning electron microscopy and x-ray microanalysis suitable for application in such fields as biology, geology, solid state physics, and materials science. Following the format of PSEM, this book gives the student a basic knowledge of (1) the user-controlled functions of the electron optics of the scanning electron microscope and electron microprobe, (2) the characteristics of electron-beam-sample inter actions, (3) image formation and interpretation, (4) x-ray spectrometry, and (5) quantitative x-ray microanalysis. Each of these topics has been updated and in most cases expanded over the material presented in PSEM in order to give the reader sufficient coverage to understand these topics and apply the information in the laboratory. Throughout the text, we have attempted to emphasize practical aspects of the techniques, describing those instru ment parameters which the microscopist can and must manipulate to obtain optimum information from the specimen. Certain areas in particular have been expanded in response to their increasing importance in the SEM field. Thus energy-dispersive x-ray spectrometry, which has undergone a tremendous surge in growth, is treated in substantial detail.