Scaling Python with Dask

Scaling Python with Dask PDF Author: Holden Karau
Publisher: "O'Reilly Media, Inc."
ISBN: 1098119835
Category : Computers
Languages : en
Pages : 210

Get Book Here

Book Description
Modern systems contain multi-core CPUs and GPUs that have the potential for parallel computing. But many scientific Python tools were not designed to leverage this parallelism. With this short but thorough resource, data scientists and Python programmers will learn how the Dask open source library for parallel computing provides APIs that make it easy to parallelize PyData libraries including NumPy, pandas, and scikit-learn. Authors Holden Karau and Mika Kimmins show you how to use Dask computations in local systems and then scale to the cloud for heavier workloads. This practical book explains why Dask is popular among industry experts and academics and is used by organizations that include Walmart, Capital One, Harvard Medical School, and NASA. With this book, you'll learn: What Dask is, where you can use it, and how it compares with other tools How to use Dask for batch data parallel processing Key distributed system concepts for working with Dask Methods for using Dask with higher-level APIs and building blocks How to work with integrated libraries such as scikit-learn, pandas, and PyTorch How to use Dask with GPUs

Scaling Python with Dask

Scaling Python with Dask PDF Author: Holden Karau
Publisher: "O'Reilly Media, Inc."
ISBN: 1098119835
Category : Computers
Languages : en
Pages : 210

Get Book Here

Book Description
Modern systems contain multi-core CPUs and GPUs that have the potential for parallel computing. But many scientific Python tools were not designed to leverage this parallelism. With this short but thorough resource, data scientists and Python programmers will learn how the Dask open source library for parallel computing provides APIs that make it easy to parallelize PyData libraries including NumPy, pandas, and scikit-learn. Authors Holden Karau and Mika Kimmins show you how to use Dask computations in local systems and then scale to the cloud for heavier workloads. This practical book explains why Dask is popular among industry experts and academics and is used by organizations that include Walmart, Capital One, Harvard Medical School, and NASA. With this book, you'll learn: What Dask is, where you can use it, and how it compares with other tools How to use Dask for batch data parallel processing Key distributed system concepts for working with Dask Methods for using Dask with higher-level APIs and building blocks How to work with integrated libraries such as scikit-learn, pandas, and PyTorch How to use Dask with GPUs

Scaling Python with Ray

Scaling Python with Ray PDF Author: Holden Karau
Publisher: "O'Reilly Media, Inc."
ISBN: 1098118774
Category : Computers
Languages : en
Pages : 269

Get Book Here

Book Description
Serverless computing enables developers to concentrate solely on their applications rather than worry about where they've been deployed. With the Ray general-purpose serverless implementation in Python, programmers and data scientists can hide servers, implement stateful applications, support direct communication between tasks, and access hardware accelerators. In this book, experienced software architecture practitioners Holden Karau and Boris Lublinsky show you how to scale existing Python applications and pipelines, allowing you to stay in the Python ecosystem while reducing single points of failure and manual scheduling. Scaling Python with Ray is ideal for software architects and developers eager to explore successful case studies and learn more about decision and measurement effectiveness. If your data processing or server application has grown beyond what a single computer can handle, this book is for you. You'll explore distributed processing (the pure Python implementation of serverless) and learn how to: Implement stateful applications with Ray actors Build workflow management in Ray Use Ray as a unified system for batch and stream processing Apply advanced data processing with Ray Build microservices with Ray Implement reliable Ray applications

Data Science with Python and Dask

Data Science with Python and Dask PDF Author: Jesse Daniel
Publisher: Simon and Schuster
ISBN: 1638353549
Category : Computers
Languages : en
Pages : 379

Get Book Here

Book Description
Summary Dask is a native parallel analytics tool designed to integrate seamlessly with the libraries you're already using, including Pandas, NumPy, and Scikit-Learn. With Dask you can crunch and work with huge datasets, using the tools you already have. And Data Science with Python and Dask is your guide to using Dask for your data projects without changing the way you work! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. You'll find registration instructions inside the print book. About the Technology An efficient data pipeline means everything for the success of a data science project. Dask is a flexible library for parallel computing in Python that makes it easy to build intuitive workflows for ingesting and analyzing large, distributed datasets. Dask provides dynamic task scheduling and parallel collections that extend the functionality of NumPy, Pandas, and Scikit-learn, enabling users to scale their code from a single laptop to a cluster of hundreds of machines with ease. About the Book Data Science with Python and Dask teaches you to build scalable projects that can handle massive datasets. After meeting the Dask framework, you'll analyze data in the NYC Parking Ticket database and use DataFrames to streamline your process. Then, you'll create machine learning models using Dask-ML, build interactive visualizations, and build clusters using AWS and Docker. What's inside Working with large, structured and unstructured datasets Visualization with Seaborn and Datashader Implementing your own algorithms Building distributed apps with Dask Distributed Packaging and deploying Dask apps About the Reader For data scientists and developers with experience using Python and the PyData stack. About the Author Jesse Daniel is an experienced Python developer. He taught Python for Data Science at the University of Denver and leads a team of data scientists at a Denver-based media technology company. Table of Contents PART 1 - The Building Blocks of scalable computing Why scalable computing matters Introducing Dask PART 2 - Working with Structured Data using Dask DataFrames Introducing Dask DataFrames Loading data into DataFrames Cleaning and transforming DataFrames Summarizing and analyzing DataFrames Visualizing DataFrames with Seaborn Visualizing location data with Datashader PART 3 - Extending and deploying Dask Working with Bags and Arrays Machine learning with Dask-ML Scaling and deploying Dask

Image Processing Masterclass with Python

Image Processing Masterclass with Python PDF Author: Sandipan Dey
Publisher: BPB Publications
ISBN: 9389898641
Category : Computers
Languages : en
Pages : 433

Get Book Here

Book Description
Over 50 problems solved with classical algorithms + ML / DL models KEY FEATURESÊ _ Problem-driven approach to practice image processing.Ê _ Practical usage of popular Python libraries: Numpy, Scipy, scikit-image, PIL and SimpleITK. _ End-to-end demonstration of popular facial image processing challenges using MTCNN and MicrosoftÕs Cognitive Vision APIs. Ê DESCRIPTIONÊ This book starts with basic Image Processing and manipulation problems and demonstrates how to solve them with popular Python libraries and modules. It then concentrates on problems based on Geometric image transformations and problems to be solved with Image hashing.Ê Next, the book focuses on solving problems based on Sampling, Convolution, Discrete Fourier transform, Frequency domain filtering and image restoration with deconvolution. It also aims at solving Image enhancement problems using differentÊ algorithms such as spatial filters and create a super resolution image using SRGAN. Finally, it explores popular facial image processing problems and solves them with Machine learning and Deep learning models using popular python ML / DL libraries. WHAT YOU WILL LEARNÊÊ _ Develop strong grip on the fundamentals of Image Processing and Image Manipulation. _ Solve popular Image Processing problems using Machine Learning and Deep Learning models. _ Working knowledge on Python libraries including numpy, scipyÊ and scikit-image. _ Use popular Python Machine Learning packages such as scikit-learn, Keras and pytorch. _ Live implementation of Facial Image Processing techniques such as Face Detection / Recognition / Parsing dlib and MTCNN. WHO THIS BOOK IS FORÊÊÊ This book is designed specially for computer vision users, machine learning engineers, image processing experts who are looking for solving modern image processing/computer vision challenges. TABLE OF CONTENTS 1. Chapter 1: Basic Image & Video Processing 2. Chapter 2: More Image Transformation and Manipulation 3. Chapter 3: Sampling, Convolution and Discrete Fourier Transform 4. Chapter 4: Discrete Cosine / Wavelet Transform and Deconvolution 5. Chapter 5: Image Enhancement 6. Chapter 6: More Image Enhancement 7. Chapter 7: Facel Image Processing

Extending Power BI with Python and R

Extending Power BI with Python and R PDF Author: Luca Zavarella
Publisher: Packt Publishing Ltd
ISBN: 1837635862
Category : Computers
Languages : en
Pages : 815

Get Book Here

Book Description
Ingest, transform, manipulate, and visualize your data beyond Power BI's capabilities. Purchase of the print or Kindle book includes a free eBook in PDF format. Key Features Discover best practices for using Python and R in Power BI by implementing non-trivial code Enrich your Power BI dashboards using external APIs and machine learning models Create any visualization, as complex as you want, using Python and R scripts Book DescriptionThe latest edition of this book delves deep into advanced analytics, focusing on enhancing Python and R proficiency within Power BI. New chapters cover optimizing Python and R settings, utilizing Intel's Math Kernel Library (MKL) for performance boosts, and addressing integration challenges. Techniques for managing large datasets beyond available RAM, employing the Parquet data format, and advanced fuzzy matching algorithms are explored. Additionally, it discusses leveraging SQL Server Language Extensions to overcome traditional Python and R limitations in Power BI. It also helps in crafting sophisticated visualizations using the Grammar of Graphics in both R and Python. This Power BI book will help you master data validation with regular expressions, import data from diverse sources, and apply advanced algorithms for transformation. You'll learn how to safeguard personal data in Power BI with techniques like pseudonymization, anonymization, and data masking. You'll also get to grips with the key statistical features of datasets by plotting multiple visual graphs in the process of building a machine learning model. The book will guide you on utilizing external APIs for enrichment, enhancing I/O performance, and leveraging Python and R for analysis. You'll reinforce your learning with questions at the end of each chapter.What you will learn Configure optimal integration of Python and R with Power BI Perform complex data manipulations not possible by default in Power BI Boost Power BI logging and loading large datasets Extract insights from your data using algorithms like linear optimization Calculate string distances and learn how to use them for probabilistic fuzzy matching Handle outliers and missing values for multivariate and time-series data Apply Exploratory Data Analysis in Power BI with R Learn to use Grammar of Graphics in Python Who this book is for This book is for business analysts, business intelligence professionals, and data scientists who already use Microsoft Power BI and want to add more value to their analysis using Python and R. Working knowledge of Power BI is required to make the most of this book. Basic knowledge of Python and R will also be helpful.

Practical Data Science with Python 3

Practical Data Science with Python 3 PDF Author: Ervin Varga
Publisher: Apress
ISBN: 1484248597
Category : Computers
Languages : en
Pages : 468

Get Book Here

Book Description
Gain insight into essential data science skills in a holistic manner using data engineering and associated scalable computational methods. This book covers the most popular Python 3 frameworks for both local and distributed (in premise and cloud based) processing. Along the way, you will be introduced to many popular open-source frameworks, like, SciPy, scikitlearn, Numba, Apache Spark, etc. The book is structured around examples, so you will grasp core concepts via case studies and Python 3 code. As data science projects gets continuously larger and more complex, software engineering knowledge and experience is crucial to produce evolvable solutions. You'll see how to create maintainable software for data science and how to document data engineering practices. This book is a good starting point for people who want to gain practical skills to perform data science. All the code will be available in the form of IPython notebooks and Python 3 programs, which allow you to reproduce all analyses from the book and customize them for your own purpose. You'll also benefit from advanced topics like Machine Learning, Recommender Systems, and Security in Data Science. Practical Data Science with Python will empower you analyze data, formulate proper questions, and produce actionable insights, three core stages in most data science endeavors. What You'll LearnPlay the role of a data scientist when completing increasingly challenging exercises using Python 3Work work with proven data science techniques/technologies Review scalable software engineering practices to ramp up data analysis abilities in the realm of Big Data Apply theory of probability, statistical inference, and algebra to understand the data science practicesWho This Book Is For Anyone who would like to embark into the realm of data science using Python 3.

Building ETL Pipelines with Python

Building ETL Pipelines with Python PDF Author: Brij Kishore Pandey
Publisher: Packt Publishing Ltd
ISBN: 1804615536
Category : Computers
Languages : en
Pages : 246

Get Book Here

Book Description
Develop production-ready ETL pipelines by leveraging Python libraries and deploying them for suitable use cases Key Features Understand how to set up a Python virtual environment with PyCharm Learn functional and object-oriented approaches to create ETL pipelines Create robust CI/CD processes for ETL pipelines Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionModern extract, transform, and load (ETL) pipelines for data engineering have favored the Python language for its broad range of uses and a large assortment of tools, applications, and open source components. With its simplicity and extensive library support, Python has emerged as the undisputed choice for data processing. In this book, you’ll walk through the end-to-end process of ETL data pipeline development, starting with an introduction to the fundamentals of data pipelines and establishing a Python development environment to create pipelines. Once you've explored the ETL pipeline design principles and ET development process, you'll be equipped to design custom ETL pipelines. Next, you'll get to grips with the steps in the ETL process, which involves extracting valuable data; performing transformations, through cleaning, manipulation, and ensuring data integrity; and ultimately loading the processed data into storage systems. You’ll also review several ETL modules in Python, comparing their pros and cons when building data pipelines and leveraging cloud tools, such as AWS, to create scalable data pipelines. Lastly, you’ll learn about the concept of test-driven development for ETL pipelines to ensure safe deployments. By the end of this book, you’ll have worked on several hands-on examples to create high-performance ETL pipelines to develop robust, scalable, and resilient environments using Python.What you will learn Explore the available libraries and tools to create ETL pipelines using Python Write clean and resilient ETL code in Python that can be extended and easily scaled Understand the best practices and design principles for creating ETL pipelines Orchestrate the ETL process and scale the ETL pipeline effectively Discover tools and services available in AWS for ETL pipelines Understand different testing strategies and implement them with the ETL process Who this book is for If you are a data engineer or software professional looking to create enterprise-level ETL pipelines using Python, this book is for you. Fundamental knowledge of Python is a prerequisite.

Machine Learning for Earth Sciences

Machine Learning for Earth Sciences PDF Author: Maurizio Petrelli
Publisher: Springer Nature
ISBN: 3031351142
Category : Science
Languages : en
Pages : 214

Get Book Here

Book Description
This textbook introduces the reader to Machine Learning (ML) applications in Earth Sciences. In detail, it starts by describing the basics of machine learning and its potentials in Earth Sciences to solve geological problems. It describes the main Python tools devoted to ML, the typival workflow of ML applications in Earth Sciences, and proceeds with reporting how ML algorithms work. The book provides many examples of ML application to Earth Sciences problems in many fields, such as the clustering and dimensionality reduction in petro-volcanological studies, the clustering of multi-spectral data, well-log data facies classification, and machine learning regression in petrology. Also, the book introduces the basics of parallel computing and how to scale ML models in the cloud. The book is devoted to Earth Scientists, at any level, from students to academics and professionals.

Ensemble Learning for AI Developers

Ensemble Learning for AI Developers PDF Author: Alok Kumar
Publisher: Apress
ISBN: 1484259408
Category : Computers
Languages : en
Pages : 146

Get Book Here

Book Description
Use ensemble learning techniques and models to improve your machine learning results. Ensemble Learning for AI Developers starts you at the beginning with an historical overview and explains key ensemble techniques and why they are needed. You then will learn how to change training data using bagging, bootstrap aggregating, random forest models, and cross-validation methods. Authors Kumar and Jain provide best practices to guide you in combining models and using tools to boost performance of your machine learning projects. They teach you how to effectively implement ensemble concepts such as stacking and boosting and to utilize popular libraries such as Keras, Scikit Learn, TensorFlow, PyTorch, and Microsoft LightGBM. Tips are presented to apply ensemble learning in different data science problems, including time series data, imaging data, and NLP. Recent advances in ensemble learning are discussed. Sample code is provided in the form of scripts and the IPython notebook. What You Will Learn Understand the techniques and methods utilized in ensemble learningUse bagging, stacking, and boosting to improve performance of your machine learning projects by combining models to decrease variance, improve predictions, and reduce biasEnhance your machine learning architecture with ensemble learning Who This Book Is For Data scientists and machine learning engineers keen on exploring ensemble learning

Recent Challenges in Intelligent Information and Database Systems

Recent Challenges in Intelligent Information and Database Systems PDF Author: Tzung-Pei Hong
Publisher: Springer Nature
ISBN: 981161685X
Category : Computers
Languages : en
Pages : 458

Get Book Here

Book Description
This volume constitutes the refereed proceedings of the 13th Asian Conference on Intelligent Information and Database Systems, ACIIDS 2021, held in Phuket, Thailand, in April 2021. The total of 35 full papers accepted for publication in these proceedings were carefully reviewed and selected from 291 submissions. The papers are organized in the following topical sections: ​​data mining and machine learning methods; advanced data mining techniques and applications; intelligent and contextual systems; natural language processing; network systems and applications; computational imaging and vision; decision support and control systems; data modelling and processing for Industry 4.0.