Scalable Pattern Recognition Algorithms

Scalable Pattern Recognition Algorithms PDF Author: Pradipta Maji
Publisher: Springer Science & Business Media
ISBN: 3319056301
Category : Computers
Languages : en
Pages : 316

Get Book Here

Book Description
This book addresses the need for a unified framework describing how soft computing and machine learning techniques can be judiciously formulated and used in building efficient pattern recognition models. The text reviews both established and cutting-edge research, providing a careful balance of theory, algorithms, and applications, with a particular emphasis given to applications in computational biology and bioinformatics. Features: integrates different soft computing and machine learning methodologies with pattern recognition tasks; discusses in detail the integration of different techniques for handling uncertainties in decision-making and efficiently mining large biological datasets; presents a particular emphasis on real-life applications, such as microarray expression datasets and magnetic resonance images; includes numerous examples and experimental results to support the theoretical concepts described; concludes each chapter with directions for future research and a comprehensive bibliography.

Scalable Pattern Recognition Algorithms

Scalable Pattern Recognition Algorithms PDF Author: Pradipta Maji
Publisher: Springer Science & Business Media
ISBN: 3319056301
Category : Computers
Languages : en
Pages : 316

Get Book Here

Book Description
This book addresses the need for a unified framework describing how soft computing and machine learning techniques can be judiciously formulated and used in building efficient pattern recognition models. The text reviews both established and cutting-edge research, providing a careful balance of theory, algorithms, and applications, with a particular emphasis given to applications in computational biology and bioinformatics. Features: integrates different soft computing and machine learning methodologies with pattern recognition tasks; discusses in detail the integration of different techniques for handling uncertainties in decision-making and efficiently mining large biological datasets; presents a particular emphasis on real-life applications, such as microarray expression datasets and magnetic resonance images; includes numerous examples and experimental results to support the theoretical concepts described; concludes each chapter with directions for future research and a comprehensive bibliography.

Pattern Recognition Algorithms for Data Mining

Pattern Recognition Algorithms for Data Mining PDF Author: Sankar K. Pal
Publisher: CRC Press
ISBN: 0203998073
Category : Computers
Languages : en
Pages : 280

Get Book Here

Book Description
Pattern Recognition Algorithms for Data Mining addresses different pattern recognition (PR) tasks in a unified framework with both theoretical and experimental results. Tasks covered include data condensation, feature selection, case generation, clustering/classification, and rule generation and evaluation. This volume presents various theories, me

Artificial Intelligence and Soft Computing

Artificial Intelligence and Soft Computing PDF Author: Rutkowski Leszek
Publisher: Springer
ISBN: 9783642386572
Category : Computers
Languages : en
Pages : 637

Get Book Here

Book Description
The two-volume set LNAI 7894 and LNCS 7895 constitutes the refereed proceedings of the 12th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2013, held in Zakopane, Poland in June 2013. The 112 revised full papers presented together with one invited paper were carefully reviewed and selected from 274 submissions. The 57 papers included in the first volume are organized in the following topical sections: neural networks and their applications; fuzzy systems and their applications; pattern classification; and computer vision, image and speech analysis.

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning PDF Author: Christopher M. Bishop
Publisher: Springer
ISBN: 9781493938438
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Scaling Up Machine Learning

Scaling Up Machine Learning PDF Author: Ron Bekkerman
Publisher: Cambridge University Press
ISBN: 0521192242
Category : Computers
Languages : en
Pages : 493

Get Book Here

Book Description
This integrated collection covers a range of parallelization platforms, concurrent programming frameworks and machine learning settings, with case studies.

Handbook Of Pattern Recognition And Computer Vision (2nd Edition)

Handbook Of Pattern Recognition And Computer Vision (2nd Edition) PDF Author: Chi Hau Chen
Publisher: World Scientific
ISBN: 9814497649
Category : Computers
Languages : en
Pages : 1045

Get Book Here

Book Description
The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.

Internet-Scale Pattern Recognition

Internet-Scale Pattern Recognition PDF Author: Anang Muhamad Amin
Publisher: CRC Press
ISBN: 1466510978
Category : Computers
Languages : en
Pages : 196

Get Book Here

Book Description
For machine intelligence applications to work successfully, machines must perform reliably under variations of data and must be able to keep up with data streams. Internet-Scale Pattern Recognition: New Techniques for Voluminous Data Sets and Data Clouds unveils computational models that address performance and scalability to achieve higher levels

Progress in Pattern Recognition, Image Analysis and Applications

Progress in Pattern Recognition, Image Analysis and Applications PDF Author: Luis Rueda
Publisher: Springer
ISBN: 3540767258
Category : Computers
Languages : en
Pages : 989

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 12th Iberoamerican Congress on Pattern Recognition, CIARP 2007, held in Valparaiso, Chile, November 13-16, 2007. The 97 revised full papers presented together with four keynote articles were carefully reviewed and selected from 200 submissions. The papers cover ongoing research and mathematical methods for pattern recognition, image analysis, and applications in areas such as computer vision, robotics, industry and health.

Combinatorial Pattern Matching

Combinatorial Pattern Matching PDF Author: Paolo Ferragina
Publisher: Springer Science & Business Media
ISBN: 3540690662
Category : Computers
Languages : en
Pages : 327

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 19th Annual Symposium on Combinatorial Pattern Matching, CPM 2008, held in Pisa, Italy, in June 2008. The 25 revised full papers presented together with 3 invited talks were carefully reviewed and selected from 78 submissions. The papers address all areas related to combinatorial pattern matching and its applications, such as coding and data compression, computational biology, data mining, information retrieval, natural language processing, pattern recognition, string algorithms, string processing in databases, symbolic computing and text searching.

Scalable Optimization via Probabilistic Modeling

Scalable Optimization via Probabilistic Modeling PDF Author: Martin Pelikan
Publisher: Springer
ISBN: 3540349545
Category : Mathematics
Languages : en
Pages : 363

Get Book Here

Book Description
I’m not usually a fan of edited volumes. Too often they are an incoherent hodgepodge of remnants, renegades, or rejects foisted upon an unsuspecting reading public under a misleading or fraudulent title. The volume Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications is a worthy addition to your library because it succeeds on exactly those dimensions where so many edited volumes fail. For example, take the title, Scalable Optimization via Probabilistic M- eling: From Algorithms to Applications. You need not worry that you’re going to pick up this book and ?nd stray articles about anything else. This book focuseslikealaserbeamononeofthehottesttopicsinevolutionary compu- tion over the last decade or so: estimation of distribution algorithms (EDAs). EDAs borrow evolutionary computation’s population orientation and sel- tionism and throw out the genetics to give us a hybrid of substantial power, elegance, and extensibility. The article sequencing in most edited volumes is hard to understand, but from the get go the editors of this volume have assembled a set of articles sequenced in a logical fashion. The book moves from design to e?ciency enhancement and then concludes with relevant applications. The emphasis on e?ciency enhancement is particularly important, because the data-mining perspectiveimplicitinEDAsopensuptheworldofoptimizationtonewme- ods of data-guided adaptation that can further speed solutions through the construction and utilization of e?ective surrogates, hybrids, and parallel and temporal decompositions.