Scalable Optimization via Probabilistic Modeling

Scalable Optimization via Probabilistic Modeling PDF Author: Martin Pelikan
Publisher: Springer
ISBN: 3540349545
Category : Mathematics
Languages : en
Pages : 363

Get Book Here

Book Description
I’m not usually a fan of edited volumes. Too often they are an incoherent hodgepodge of remnants, renegades, or rejects foisted upon an unsuspecting reading public under a misleading or fraudulent title. The volume Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications is a worthy addition to your library because it succeeds on exactly those dimensions where so many edited volumes fail. For example, take the title, Scalable Optimization via Probabilistic M- eling: From Algorithms to Applications. You need not worry that you’re going to pick up this book and ?nd stray articles about anything else. This book focuseslikealaserbeamononeofthehottesttopicsinevolutionary compu- tion over the last decade or so: estimation of distribution algorithms (EDAs). EDAs borrow evolutionary computation’s population orientation and sel- tionism and throw out the genetics to give us a hybrid of substantial power, elegance, and extensibility. The article sequencing in most edited volumes is hard to understand, but from the get go the editors of this volume have assembled a set of articles sequenced in a logical fashion. The book moves from design to e?ciency enhancement and then concludes with relevant applications. The emphasis on e?ciency enhancement is particularly important, because the data-mining perspectiveimplicitinEDAsopensuptheworldofoptimizationtonewme- ods of data-guided adaptation that can further speed solutions through the construction and utilization of e?ective surrogates, hybrids, and parallel and temporal decompositions.

Scalable Optimization via Probabilistic Modeling

Scalable Optimization via Probabilistic Modeling PDF Author: Martin Pelikan
Publisher: Springer
ISBN: 3540349545
Category : Mathematics
Languages : en
Pages : 363

Get Book Here

Book Description
I’m not usually a fan of edited volumes. Too often they are an incoherent hodgepodge of remnants, renegades, or rejects foisted upon an unsuspecting reading public under a misleading or fraudulent title. The volume Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications is a worthy addition to your library because it succeeds on exactly those dimensions where so many edited volumes fail. For example, take the title, Scalable Optimization via Probabilistic M- eling: From Algorithms to Applications. You need not worry that you’re going to pick up this book and ?nd stray articles about anything else. This book focuseslikealaserbeamononeofthehottesttopicsinevolutionary compu- tion over the last decade or so: estimation of distribution algorithms (EDAs). EDAs borrow evolutionary computation’s population orientation and sel- tionism and throw out the genetics to give us a hybrid of substantial power, elegance, and extensibility. The article sequencing in most edited volumes is hard to understand, but from the get go the editors of this volume have assembled a set of articles sequenced in a logical fashion. The book moves from design to e?ciency enhancement and then concludes with relevant applications. The emphasis on e?ciency enhancement is particularly important, because the data-mining perspectiveimplicitinEDAsopensuptheworldofoptimizationtonewme- ods of data-guided adaptation that can further speed solutions through the construction and utilization of e?ective surrogates, hybrids, and parallel and temporal decompositions.

Metaheuristics for Finding Multiple Solutions

Metaheuristics for Finding Multiple Solutions PDF Author: Mike Preuss
Publisher: Springer Nature
ISBN: 3030795535
Category : Computers
Languages : en
Pages : 322

Get Book Here

Book Description
This book presents the latest trends and developments in multimodal optimization and niching techniques. Most existing optimization methods are designed for locating a single global solution. However, in real-world settings, many problems are “multimodal” by nature, i.e., multiple satisfactory solutions exist. It may be desirable to locate several such solutions before deciding which one to use. Multimodal optimization has been the subject of intense study in the field of population-based meta-heuristic algorithms, e.g., evolutionary algorithms (EAs), for the past few decades. These multimodal optimization techniques are commonly referred to as “niching” methods, because of the nature-inspired “niching” effect that is induced to the solution population targeting at multiple optima. Many niching methods have been developed in the EA community. Some classic examples include crowding, fitness sharing, clearing, derating, restricted tournament selection, speciation, etc. Nevertheless, applying these niching methods to real-world multimodal problems often encounters significant challenges. To facilitate the advance of niching methods in facing these challenges, this edited book highlights the latest developments in niching methods. The included chapters touch on algorithmic improvements and developments, representation, and visualization issues, as well as new research directions, such as preference incorporation in decision making and new application areas. This edited book is a first of this kind specifically on the topic of niching techniques. This book will serve as a valuable reference book both for researchers and practitioners. Although chapters are written in a mutually independent way, Chapter 1 will help novice readers get an overview of the field. It describes the development of the field and its current state and provides a comparative analysis of the IEEE CEC and ACM GECCO niching competitions of recent years, followed by a collection of open research questions and possible research directions that may be tackled in the future.

Metaheuristics for Big Data

Metaheuristics for Big Data PDF Author: Clarisse Dhaenens
Publisher: John Wiley & Sons
ISBN: 1119347580
Category : Computers
Languages : en
Pages : 217

Get Book Here

Book Description
Big Data is a new field, with many technological challenges to be understood in order to use it to its full potential. These challenges arise at all stages of working with Big Data, beginning with data generation and acquisition. The storage and management phase presents two critical challenges: infrastructure, for storage and transportation, and conceptual models. Finally, to extract meaning from Big Data requires complex analysis. Here the authors propose using metaheuristics as a solution to these challenges; they are first able to deal with large size problems and secondly flexible and therefore easily adaptable to different types of data and different contexts. The use of metaheuristics to overcome some of these data mining challenges is introduced and justified in the first part of the book, alongside a specific protocol for the performance evaluation of algorithms. An introduction to metaheuristics follows. The second part of the book details a number of data mining tasks, including clustering, association rules, supervised classification and feature selection, before explaining how metaheuristics can be used to deal with them. This book is designed to be self-contained, so that readers can understand all of the concepts discussed within it, and to provide an overview of recent applications of metaheuristics to knowledge discovery problems in the context of Big Data.

Linkage in Evolutionary Computation

Linkage in Evolutionary Computation PDF Author: Ying-ping Chen
Publisher: Springer
ISBN: 3540850686
Category : Computers
Languages : en
Pages : 487

Get Book Here

Book Description
In recent years, the issue of linkage in GEAs has garnered greater attention and recognition from researchers. Conventional approaches that rely much on ad hoc tweaking of parameters to control the search by balancing the level of exploitation and exploration are grossly inadequate. As shown in the work reported here, such parameters tweaking based approaches have their limits; they can be easily ”fooled” by cases of triviality or peculiarity of the class of problems that the algorithms are designed to handle. Furthermore, these approaches are usually blind to the interactions between the decision variables, thereby disrupting the partial solutions that are being built up along the way.

Principles in Noisy Optimization

Principles in Noisy Optimization PDF Author: Pratyusha Rakshit
Publisher: Springer
ISBN: 9811086427
Category : Computers
Languages : en
Pages : 379

Get Book Here

Book Description
Noisy optimization is a topic of growing interest for researchers working on mainstream optimization problems. Although several techniques for dealing with stochastic noise in optimization problems are covered in journals and conference proceedings, today there are virtually no books that approach noisy optimization from a layman’s perspective; this book remedies that gap. Beginning with the foundations of evolutionary optimization, the book subsequently explores the principles of noisy optimization in single and multi-objective settings, and presents detailed illustrations of the principles developed for application in real-world multi-agent coordination problems. Special emphasis is given to the design of intelligent algorithms for noisy optimization in real-time applications. The book is unique in terms of its content, writing style and above all its simplicity, which will appeal to readers with a broad range of backgrounds. The book is divided into 7 chapters, the first of which provides an introduction to Swarm and Evolutionary Optimization algorithms. Chapter 2 includes a thorough review of agent architectures for multi-agent coordination. In turn, Chapter 3 provides an extensive review of noisy optimization, while Chapter 4 addresses issues of noise handling in the context of single-objective optimization problems. An illustrative case study on multi-robot path-planning in the presence of measurement noise is also highlighted in this chapter. Chapter 5 deals with noisy multi-objective optimization and includes a case study on noisy multi-robot box-pushing. In Chapter 6, the authors examine the scope of various algorithms in noisy optimization problems. Lastly, Chapter 7 summarizes the main results obtained in the previous chapters and elaborates on the book’s potential with regard to real-world noisy optimization problems.

Genetic Programming

Genetic Programming PDF Author: Michael O'Neill
Publisher: Springer Science & Business Media
ISBN: 3540786708
Category : Computers
Languages : en
Pages : 385

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 11th European Conference on Genetic Programming, EuroGP 2008, held in Naples, Italy, in March 2008 colocated with EvoCOP 2008. The 21 revised plenary papers and 10 revised poster papers were carefully reviewed and selected from a total of 61 submissions. A great variety of topics are presented reflecting the current state of research in the field of genetic programming, including the latest work on representations, theory, operators and analysis, evolvable hardware, agents and numerous applications.

Applications of Evolutionary Computation

Applications of Evolutionary Computation PDF Author: Cecilia Di Chio
Publisher: Springer Science & Business Media
ISBN: 3642122388
Category : Computers
Languages : en
Pages : 644

Get Book Here

Book Description
Evolutionary Computation (EC) techniques are e?cient, nature-inspired me- ods based on the principles of natural evolution and genetics. Due to their - ciency and simple underlying principles, these methods can be used for a diverse rangeofactivitiesincludingproblemsolving,optimization,machinelearningand pattern recognition. A large and continuously increasing number of researchers and professionals make use of EC techniques in various application domains. This volume presents a careful selection of relevant EC examples combined with a thorough examination of the techniques used in EC. The papers in the volume illustrate the current state of the art in the application of EC and should help and inspire researchers and professionals to develop e?cient EC methods for design and problem solving. All papers in this book were presented during EvoApplications 2010, which included a range of events on application-oriented aspects of EC. Since 1998, EvoApplications — formerly known as EvoWorkshops— has provided a unique opportunity for EC researchers to meet and discuss application aspects of EC and has been an important link between EC research and its application in a variety of domains. During these 12 years, new events have arisen, some have disappeared,whileothershavematuredtobecomeconferencesoftheirown,such as EuroGP in 2000, EvoCOP in 2004, and EvoBIO in 2007. And from this year, EvoApplications has become a conference as well.

Data Mining: Foundations and Intelligent Paradigms

Data Mining: Foundations and Intelligent Paradigms PDF Author: Dawn E. Holmes
Publisher: Springer Science & Business Media
ISBN: 3642231519
Category : Technology & Engineering
Languages : en
Pages : 367

Get Book Here

Book Description
There are many invaluable books available on data mining theory and applications. However, in compiling a volume titled “DATA MINING: Foundations and Intelligent Paradigms: Volume 3: Medical, Health, Social, Biological and other Applications” we wish to introduce some of the latest developments to a broad audience of both specialists and non-specialists in this field.

Advances in Artificial Intelligence -- IBERAMIA 2014

Advances in Artificial Intelligence -- IBERAMIA 2014 PDF Author: Ana L.C. Bazzan
Publisher: Springer
ISBN: 3319120271
Category : Computers
Languages : en
Pages : 814

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 14th Ibero-American Conference on Artificial Intelligence, IBERAMIA 2014, held in Santiago de Chile, Chile, in November 2014. The 64 papers presented were carefully reviewed and selected from 136 submissions. The papers are organized in the following topical sections: knowledge engineering, knowledge representation and probabilistic reasoning; planning and scheduling; natural language processing; machine learning; fuzzy systems; knowledge discovery and data mining; bio-inspired computing; robotics; vision; multi-agent systems; agent-based modeling and simulation; AI in education, affective computing, and human-computer interaction; applications of AI; and ambient intelligence.

Advances in Computational Intelligence

Advances in Computational Intelligence PDF Author: Jing Liu
Publisher: Springer
ISBN: 364230687X
Category : Computers
Languages : en
Pages : 286

Get Book Here

Book Description
This state-of-the-art survey offers a renewed and refreshing focus on the progress in evolutionary computation, in neural networks, and in fuzzy systems. The book presents the expertise and experiences of leading researchers spanning a diverse spectrum of computational intelligence in these areas. The result is a balanced contribution to the research area of computational intelligence that should serve the community not only as a survey and a reference, but also as an inspiration for the future advancement of the state of the art of the field. The 13 selected chapters originate from lectures and presentations given at the IEEE World Congress on Computational Intelligence, WCCI 2012, held in Brisbane, Australia, in June 2012.