Author: Shang-Hua Teng
Publisher:
ISBN: 9781680831306
Category : Computers
Languages : en
Pages : 292
Book Description
In the age of Big Data, efficient algorithms are in high demand. It is also essential that efficient algorithms should be scalable. This book surveys a family of algorithmic techniques for the design of scalable algorithms. These techniques include local network exploration, advanced sampling, sparsification, and geometric partitioning.
Scalable Algorithms for Data and Network Analysis
Author: Shang-Hua Teng
Publisher:
ISBN: 9781680831306
Category : Computers
Languages : en
Pages : 292
Book Description
In the age of Big Data, efficient algorithms are in high demand. It is also essential that efficient algorithms should be scalable. This book surveys a family of algorithmic techniques for the design of scalable algorithms. These techniques include local network exploration, advanced sampling, sparsification, and geometric partitioning.
Publisher:
ISBN: 9781680831306
Category : Computers
Languages : en
Pages : 292
Book Description
In the age of Big Data, efficient algorithms are in high demand. It is also essential that efficient algorithms should be scalable. This book surveys a family of algorithmic techniques for the design of scalable algorithms. These techniques include local network exploration, advanced sampling, sparsification, and geometric partitioning.
Computing and Combinatorics
Author: Yixin Cao
Publisher: Springer
ISBN: 3319623893
Category : Computers
Languages : en
Pages : 708
Book Description
This book constitutes the refereed proceedings of the 23rd International Conference on Computing and Combinatorics, COCOON 2017, held in Hiong Kong, China, in August 2017. The 56 full papers papers presented in this book were carefully reviewed and selected from 119 submissions. The papers cover various topics, including algorithms and data structures, complexity theory and computability, algorithmic game theory, computational learning theory, cryptography, computationalbiology, computational geometry and number theory, graph theory, and parallel and distributed computing.
Publisher: Springer
ISBN: 3319623893
Category : Computers
Languages : en
Pages : 708
Book Description
This book constitutes the refereed proceedings of the 23rd International Conference on Computing and Combinatorics, COCOON 2017, held in Hiong Kong, China, in August 2017. The 56 full papers papers presented in this book were carefully reviewed and selected from 119 submissions. The papers cover various topics, including algorithms and data structures, complexity theory and computability, algorithmic game theory, computational learning theory, cryptography, computationalbiology, computational geometry and number theory, graph theory, and parallel and distributed computing.
Algorithms for Big Data
Author: Hannah Bast
Publisher: Springer Nature
ISBN: 3031215346
Category : Algorithms
Languages : en
Pages : 296
Book Description
This open access book surveys the progress in addressing selected challenges related to the growth of big data in combination with increasingly complicated hardware. It emerged from a research program established by the German Research Foundation (DFG) as priority program SPP 1736 on Algorithmics for Big Data where researchers from theoretical computer science worked together with application experts in order to tackle problems in domains such as networking, genomics research, and information retrieval. Such domains are unthinkable without substantial hardware and software support, and these systems acquire, process, exchange, and store data at an exponential rate. The chapters of this volume summarize the results of projects realized within the program and survey-related work. This is an open access book.
Publisher: Springer Nature
ISBN: 3031215346
Category : Algorithms
Languages : en
Pages : 296
Book Description
This open access book surveys the progress in addressing selected challenges related to the growth of big data in combination with increasingly complicated hardware. It emerged from a research program established by the German Research Foundation (DFG) as priority program SPP 1736 on Algorithmics for Big Data where researchers from theoretical computer science worked together with application experts in order to tackle problems in domains such as networking, genomics research, and information retrieval. Such domains are unthinkable without substantial hardware and software support, and these systems acquire, process, exchange, and store data at an exponential rate. The chapters of this volume summarize the results of projects realized within the program and survey-related work. This is an open access book.
Working with Network Data
Author: James Bagrow
Publisher: Cambridge University Press
ISBN: 1009212591
Category : Science
Languages : en
Pages : 555
Book Description
Drawing examples from real-world networks, this essential book traces the methods behind network analysis and explains how network data is first gathered, then processed and interpreted. The text will equip you with a toolbox of diverse methods and data modelling approaches, allowing you to quickly start making your own calculations on a huge variety of networked systems. This book sets you up to succeed, addressing the questions of what you need to know and what to do with it, when beginning to work with network data. The hands-on approach adopted throughout means that beginners quickly become capable practitioners, guided by a wealth of interesting examples that demonstrate key concepts. Exercises using real-world data extend and deepen your understanding, and develop effective working patterns in network calculations and analysis. Suitable for both graduate students and researchers across a range of disciplines, this novel text provides a fast-track to network data expertise.
Publisher: Cambridge University Press
ISBN: 1009212591
Category : Science
Languages : en
Pages : 555
Book Description
Drawing examples from real-world networks, this essential book traces the methods behind network analysis and explains how network data is first gathered, then processed and interpreted. The text will equip you with a toolbox of diverse methods and data modelling approaches, allowing you to quickly start making your own calculations on a huge variety of networked systems. This book sets you up to succeed, addressing the questions of what you need to know and what to do with it, when beginning to work with network data. The hands-on approach adopted throughout means that beginners quickly become capable practitioners, guided by a wealth of interesting examples that demonstrate key concepts. Exercises using real-world data extend and deepen your understanding, and develop effective working patterns in network calculations and analysis. Suitable for both graduate students and researchers across a range of disciplines, this novel text provides a fast-track to network data expertise.
Handbook of Research on Scalable Computing Technologies
Author: Li, Kuan-Ching
Publisher: IGI Global
ISBN: 1605666629
Category : Computers
Languages : en
Pages : 1018
Book Description
"This book presents, discusses, shares ideas, results and experiences on the recent important advances and future challenges on enabling technologies for achieving higher performance"--Provided by publisher.
Publisher: IGI Global
ISBN: 1605666629
Category : Computers
Languages : en
Pages : 1018
Book Description
"This book presents, discusses, shares ideas, results and experiences on the recent important advances and future challenges on enabling technologies for achieving higher performance"--Provided by publisher.
Complex Networks and Their Applications VII
Author: Luca Maria Aiello
Publisher: Springer
ISBN: 303005411X
Category : Technology & Engineering
Languages : en
Pages : 906
Book Description
This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students and practitioners a unique update on the latest advances in theory, together with a wealth of applications. It presents the peer-reviewed proceedings of the VII International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2018), which was held in Cambridge on December 11–13, 2018. The carefully selected papers cover a wide range of theoretical topics such as network models and measures; community structure and network dynamics; diffusion, epidemics and spreading processes; and resilience and control; as well as all the main network applications, including social and political networks; networks in finance and economics; biological and neuroscience networks; and technological networks.
Publisher: Springer
ISBN: 303005411X
Category : Technology & Engineering
Languages : en
Pages : 906
Book Description
This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students and practitioners a unique update on the latest advances in theory, together with a wealth of applications. It presents the peer-reviewed proceedings of the VII International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2018), which was held in Cambridge on December 11–13, 2018. The carefully selected papers cover a wide range of theoretical topics such as network models and measures; community structure and network dynamics; diffusion, epidemics and spreading processes; and resilience and control; as well as all the main network applications, including social and political networks; networks in finance and economics; biological and neuroscience networks; and technological networks.
High-Performance Modelling and Simulation for Big Data Applications
Author: Joanna Kołodziej
Publisher: Springer
ISBN: 3030162729
Category : Computers
Languages : en
Pages : 364
Book Description
This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications.
Publisher: Springer
ISBN: 3030162729
Category : Computers
Languages : en
Pages : 364
Book Description
This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications.
Scalable Big Data Architecture
Author: Bahaaldine Azarmi
Publisher: Apress
ISBN: 1484213262
Category : Computers
Languages : en
Pages : 147
Book Description
This book highlights the different types of data architecture and illustrates the many possibilities hidden behind the term "Big Data", from the usage of No-SQL databases to the deployment of stream analytics architecture, machine learning, and governance. Scalable Big Data Architecture covers real-world, concrete industry use cases that leverage complex distributed applications , which involve web applications, RESTful API, and high throughput of large amount of data stored in highly scalable No-SQL data stores such as Couchbase and Elasticsearch. This book demonstrates how data processing can be done at scale from the usage of NoSQL datastores to the combination of Big Data distribution. When the data processing is too complex and involves different processing topology like long running jobs, stream processing, multiple data sources correlation, and machine learning, it’s often necessary to delegate the load to Hadoop or Spark and use the No-SQL to serve processed data in real time. This book shows you how to choose a relevant combination of big data technologies available within the Hadoop ecosystem. It focuses on processing long jobs, architecture, stream data patterns, log analysis, and real time analytics. Every pattern is illustrated with practical examples, which use the different open sourceprojects such as Logstash, Spark, Kafka, and so on. Traditional data infrastructures are built for digesting and rendering data synthesis and analytics from large amount of data. This book helps you to understand why you should consider using machine learning algorithms early on in the project, before being overwhelmed by constraints imposed by dealing with the high throughput of Big data. Scalable Big Data Architecture is for developers, data architects, and data scientists looking for a better understanding of how to choose the most relevant pattern for a Big Data project and which tools to integrate into that pattern.
Publisher: Apress
ISBN: 1484213262
Category : Computers
Languages : en
Pages : 147
Book Description
This book highlights the different types of data architecture and illustrates the many possibilities hidden behind the term "Big Data", from the usage of No-SQL databases to the deployment of stream analytics architecture, machine learning, and governance. Scalable Big Data Architecture covers real-world, concrete industry use cases that leverage complex distributed applications , which involve web applications, RESTful API, and high throughput of large amount of data stored in highly scalable No-SQL data stores such as Couchbase and Elasticsearch. This book demonstrates how data processing can be done at scale from the usage of NoSQL datastores to the combination of Big Data distribution. When the data processing is too complex and involves different processing topology like long running jobs, stream processing, multiple data sources correlation, and machine learning, it’s often necessary to delegate the load to Hadoop or Spark and use the No-SQL to serve processed data in real time. This book shows you how to choose a relevant combination of big data technologies available within the Hadoop ecosystem. It focuses on processing long jobs, architecture, stream data patterns, log analysis, and real time analytics. Every pattern is illustrated with practical examples, which use the different open sourceprojects such as Logstash, Spark, Kafka, and so on. Traditional data infrastructures are built for digesting and rendering data synthesis and analytics from large amount of data. This book helps you to understand why you should consider using machine learning algorithms early on in the project, before being overwhelmed by constraints imposed by dealing with the high throughput of Big data. Scalable Big Data Architecture is for developers, data architects, and data scientists looking for a better understanding of how to choose the most relevant pattern for a Big Data project and which tools to integrate into that pattern.
Report to Congress Regarding the Terrorism Information Awareness Program
Author: United States Department of Defense
Publisher:
ISBN:
Category : Civil rights
Languages : en
Pages : 112
Book Description
Publisher:
ISBN:
Category : Civil rights
Languages : en
Pages : 112
Book Description
Foundations of Data Science
Author: Avrim Blum
Publisher: Cambridge University Press
ISBN: 1108617360
Category : Computers
Languages : en
Pages : 433
Book Description
This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.
Publisher: Cambridge University Press
ISBN: 1108617360
Category : Computers
Languages : en
Pages : 433
Book Description
This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.