Author: Nabil H. Mustafa
Publisher: American Mathematical Society
ISBN: 1470461560
Category : Mathematics
Languages : en
Pages : 251
Book Description
Understanding the behavior of basic sampling techniques and intrinsic geometric attributes of data is an invaluable skill that is in high demand for both graduate students and researchers in mathematics, machine learning, and theoretical computer science. The last ten years have seen significant progress in this area, with many open problems having been resolved during this time. These include optimal lower bounds for epsilon-nets for many geometric set systems, the use of shallow-cell complexity to unify proofs, simpler and more efficient algorithms, and the use of epsilon-approximations for construction of coresets, to name a few. This book presents a thorough treatment of these probabilistic, combinatorial, and geometric methods, as well as their combinatorial and algorithmic applications. It also revisits classical results, but with new and more elegant proofs. While mathematical maturity will certainly help in appreciating the ideas presented here, only a basic familiarity with discrete mathematics, probability, and combinatorics is required to understand the material.
Sampling in Combinatorial and Geometric Set Systems
Author: Nabil H. Mustafa
Publisher: American Mathematical Society
ISBN: 1470461560
Category : Mathematics
Languages : en
Pages : 251
Book Description
Understanding the behavior of basic sampling techniques and intrinsic geometric attributes of data is an invaluable skill that is in high demand for both graduate students and researchers in mathematics, machine learning, and theoretical computer science. The last ten years have seen significant progress in this area, with many open problems having been resolved during this time. These include optimal lower bounds for epsilon-nets for many geometric set systems, the use of shallow-cell complexity to unify proofs, simpler and more efficient algorithms, and the use of epsilon-approximations for construction of coresets, to name a few. This book presents a thorough treatment of these probabilistic, combinatorial, and geometric methods, as well as their combinatorial and algorithmic applications. It also revisits classical results, but with new and more elegant proofs. While mathematical maturity will certainly help in appreciating the ideas presented here, only a basic familiarity with discrete mathematics, probability, and combinatorics is required to understand the material.
Publisher: American Mathematical Society
ISBN: 1470461560
Category : Mathematics
Languages : en
Pages : 251
Book Description
Understanding the behavior of basic sampling techniques and intrinsic geometric attributes of data is an invaluable skill that is in high demand for both graduate students and researchers in mathematics, machine learning, and theoretical computer science. The last ten years have seen significant progress in this area, with many open problems having been resolved during this time. These include optimal lower bounds for epsilon-nets for many geometric set systems, the use of shallow-cell complexity to unify proofs, simpler and more efficient algorithms, and the use of epsilon-approximations for construction of coresets, to name a few. This book presents a thorough treatment of these probabilistic, combinatorial, and geometric methods, as well as their combinatorial and algorithmic applications. It also revisits classical results, but with new and more elegant proofs. While mathematical maturity will certainly help in appreciating the ideas presented here, only a basic familiarity with discrete mathematics, probability, and combinatorics is required to understand the material.
Recovery Methodologies: Regularization and Sampling
Author: Willi Freeden
Publisher: American Mathematical Society
ISBN: 1470473453
Category : Mathematics
Languages : en
Pages : 505
Book Description
The goal of this book is to introduce the reader to methodologies in recovery problems for objects, such as functions and signals, from partial or indirect information. The recovery of objects from a set of data demands key solvers of inverse and sampling problems. Until recently, connections between the mathematical areas of inverse problems and sampling were rather tenuous. However, advances in several areas of mathematical research have revealed deep common threads between them, which proves that there is a serious need for a unifying description of the underlying mathematical ideas and concepts. Freeden and Nashed present an integrated approach to resolution methodologies from the perspective of both these areas. Researchers in sampling theory will benefit from learning about inverse problems and regularization methods, while specialists in inverse problems will gain a better understanding of the point of view of sampling concepts. This book requires some basic knowledge of functional analysis, Fourier theory, geometric number theory, constructive approximation, and special function theory. By avoiding extreme technicalities and elaborate proof techniques, it is an accessible resource for students and researchers not only from applied mathematics, but also from all branches of engineering and science.
Publisher: American Mathematical Society
ISBN: 1470473453
Category : Mathematics
Languages : en
Pages : 505
Book Description
The goal of this book is to introduce the reader to methodologies in recovery problems for objects, such as functions and signals, from partial or indirect information. The recovery of objects from a set of data demands key solvers of inverse and sampling problems. Until recently, connections between the mathematical areas of inverse problems and sampling were rather tenuous. However, advances in several areas of mathematical research have revealed deep common threads between them, which proves that there is a serious need for a unifying description of the underlying mathematical ideas and concepts. Freeden and Nashed present an integrated approach to resolution methodologies from the perspective of both these areas. Researchers in sampling theory will benefit from learning about inverse problems and regularization methods, while specialists in inverse problems will gain a better understanding of the point of view of sampling concepts. This book requires some basic knowledge of functional analysis, Fourier theory, geometric number theory, constructive approximation, and special function theory. By avoiding extreme technicalities and elaborate proof techniques, it is an accessible resource for students and researchers not only from applied mathematics, but also from all branches of engineering and science.
Iwasawa Theory and Its Perspective, Volume 1
Author: Tadashi Ochiai
Publisher: American Mathematical Society
ISBN: 1470456729
Category : Mathematics
Languages : en
Pages : 167
Book Description
Iwasawa theory began in the late 1950s with a series of papers by Kenkichi Iwasawa on ideal class groups in the cyclotomic tower of number fields and their relation to $p$-adic $L$-functions. The theory was later generalized by putting it in the context of elliptic curves and modular forms. The main motivation for writing this book was the need for a total perspective of Iwasawa theory that includes the new trends of generalized Iwasawa theory. Another motivation of this book is an update of the classical theory for class groups taking into account the changed point of view on Iwasawa theory. The goal of this first part of the two-part publication is to explain the theory of ideal class groups, including its algebraic aspect (the Iwasawa class number formula), its analytic aspect (Leopoldt–Kubota $L$-functions), and the Iwasawa main conjecture, which is a bridge between the algebraic and the analytic aspects. The second part of the book will be published as a separate volume in the same series, Mathematical Surveys and Monographs of the American Mathematical Society.
Publisher: American Mathematical Society
ISBN: 1470456729
Category : Mathematics
Languages : en
Pages : 167
Book Description
Iwasawa theory began in the late 1950s with a series of papers by Kenkichi Iwasawa on ideal class groups in the cyclotomic tower of number fields and their relation to $p$-adic $L$-functions. The theory was later generalized by putting it in the context of elliptic curves and modular forms. The main motivation for writing this book was the need for a total perspective of Iwasawa theory that includes the new trends of generalized Iwasawa theory. Another motivation of this book is an update of the classical theory for class groups taking into account the changed point of view on Iwasawa theory. The goal of this first part of the two-part publication is to explain the theory of ideal class groups, including its algebraic aspect (the Iwasawa class number formula), its analytic aspect (Leopoldt–Kubota $L$-functions), and the Iwasawa main conjecture, which is a bridge between the algebraic and the analytic aspects. The second part of the book will be published as a separate volume in the same series, Mathematical Surveys and Monographs of the American Mathematical Society.
Algebras, Lattices, Varieties
Author: Ralph S. Freese
Publisher: American Mathematical Society
ISBN: 1470467984
Category : Mathematics
Languages : en
Pages : 451
Book Description
This book is the third of a three-volume set of books on the theory of algebras, a study that provides a consistent framework for understanding algebraic systems, including groups, rings, modules, semigroups and lattices. Volume I, first published in the 1980s, built the foundations of the theory and is considered to be a classic in this field. The long-awaited volumes II and III are now available. Taken together, the three volumes provide a comprehensive picture of the state of art in general algebra today, and serve as a valuable resource for anyone working in the general theory of algebraic systems or in related fields. The two new volumes are arranged around six themes first introduced in Volume I. Volume II covers the Classification of Varieties, Equational Logic, and Rudiments of Model Theory, and Volume III covers Finite Algebras and their Clones, Abstract Clone Theory, and the Commutator. These topics are presented in six chapters with independent expositions, but are linked by themes and motifs that run through all three volumes.
Publisher: American Mathematical Society
ISBN: 1470467984
Category : Mathematics
Languages : en
Pages : 451
Book Description
This book is the third of a three-volume set of books on the theory of algebras, a study that provides a consistent framework for understanding algebraic systems, including groups, rings, modules, semigroups and lattices. Volume I, first published in the 1980s, built the foundations of the theory and is considered to be a classic in this field. The long-awaited volumes II and III are now available. Taken together, the three volumes provide a comprehensive picture of the state of art in general algebra today, and serve as a valuable resource for anyone working in the general theory of algebraic systems or in related fields. The two new volumes are arranged around six themes first introduced in Volume I. Volume II covers the Classification of Varieties, Equational Logic, and Rudiments of Model Theory, and Volume III covers Finite Algebras and their Clones, Abstract Clone Theory, and the Commutator. These topics are presented in six chapters with independent expositions, but are linked by themes and motifs that run through all three volumes.
Iwasawa Theory and Its Perspective, Volume 2
Author: Tadashi Ochiai
Publisher: American Mathematical Society
ISBN: 1470456737
Category : Mathematics
Languages : en
Pages : 228
Book Description
Iwasawa theory began in the late 1950s with a series of papers by Kenkichi Iwasawa on ideal class groups in the cyclotomic tower of number fields and their relation to $p$-adic $L$-functions. The theory was later generalized by putting it in the context of elliptic curves and modular forms. The main motivation for writing this book was the need for a total perspective of Iwasawa theory that includes the new trends of generalized Iwasawa theory. Another motivation is to update the classical theory for class groups, taking into account the changed point of view on Iwasawa theory. The goal of this second part of the three-part publication is to explain various aspects of the cyclotomic Iwasawa theory of $p$-adic Galois representations.
Publisher: American Mathematical Society
ISBN: 1470456737
Category : Mathematics
Languages : en
Pages : 228
Book Description
Iwasawa theory began in the late 1950s with a series of papers by Kenkichi Iwasawa on ideal class groups in the cyclotomic tower of number fields and their relation to $p$-adic $L$-functions. The theory was later generalized by putting it in the context of elliptic curves and modular forms. The main motivation for writing this book was the need for a total perspective of Iwasawa theory that includes the new trends of generalized Iwasawa theory. Another motivation is to update the classical theory for class groups, taking into account the changed point of view on Iwasawa theory. The goal of this second part of the three-part publication is to explain various aspects of the cyclotomic Iwasawa theory of $p$-adic Galois representations.
Multidimensional Residue Theory and Applications
Author: Alekos Vidras
Publisher: American Mathematical Society
ISBN: 1470471124
Category : Mathematics
Languages : en
Pages : 556
Book Description
Residue theory is an active area of complex analysis with connections and applications to fields as diverse as partial differential and integral equations, computer algebra, arithmetic or diophantine geometry, and mathematical physics. Multidimensional Residue Theory and Applications defines and studies multidimensional residues via analytic continuation for holomorphic bundle-valued current maps. This point of view offers versatility and flexibility to the tools and constructions proposed, allowing these residues to be defined and studied outside the classical case of complete intersection. The book goes on to show how these residues are algebraic in nature, and how they relate and apply to a wide range of situations, most notably to membership problems, such as the Briançon–Skoda theorem and Hilbert's Nullstellensatz, to arithmetic intersection theory and to tropical geometry. This book will supersede the existing literature in this area, which dates back more than three decades. It will be appreciated by mathematicians and graduate students in multivariate complex analysis. But thanks to the gentle treatment of the one-dimensional case in Chapter 1 and the rich background material in the appendices, it may also be read by specialists in arithmetic, diophantine, or tropical geometry, as well as in mathematical physics or computer algebra.
Publisher: American Mathematical Society
ISBN: 1470471124
Category : Mathematics
Languages : en
Pages : 556
Book Description
Residue theory is an active area of complex analysis with connections and applications to fields as diverse as partial differential and integral equations, computer algebra, arithmetic or diophantine geometry, and mathematical physics. Multidimensional Residue Theory and Applications defines and studies multidimensional residues via analytic continuation for holomorphic bundle-valued current maps. This point of view offers versatility and flexibility to the tools and constructions proposed, allowing these residues to be defined and studied outside the classical case of complete intersection. The book goes on to show how these residues are algebraic in nature, and how they relate and apply to a wide range of situations, most notably to membership problems, such as the Briançon–Skoda theorem and Hilbert's Nullstellensatz, to arithmetic intersection theory and to tropical geometry. This book will supersede the existing literature in this area, which dates back more than three decades. It will be appreciated by mathematicians and graduate students in multivariate complex analysis. But thanks to the gentle treatment of the one-dimensional case in Chapter 1 and the rich background material in the appendices, it may also be read by specialists in arithmetic, diophantine, or tropical geometry, as well as in mathematical physics or computer algebra.
Approximation and Online Algorithms
Author: Jarosław Byrka
Publisher: Springer Nature
ISBN: 3031498151
Category : Mathematics
Languages : en
Pages : 246
Book Description
This book constitutes the refereed proceedings of the 21st International Workshop on Approximation and Online Algorithms, WAOA 2023, held in Amsterdam, The Netherlands, during September 7–8, 2023 The 16 full papers included in this book are carefully reviewed and selected from 43 submissions. The topics of WAOA 2023 were algorithmic game theory, algorithmic trading, coloring and partitioning, competitive analysis, computational advertising, computational finance, cuts and connectivity, FPT-approximation algorithms, geometric problems, graph algorithms, inapproximability results, mechanism design, network design, packing and covering, paradigms for the design and analysis of approximation and online algorithms, resource augmentation, and scheduling problems
Publisher: Springer Nature
ISBN: 3031498151
Category : Mathematics
Languages : en
Pages : 246
Book Description
This book constitutes the refereed proceedings of the 21st International Workshop on Approximation and Online Algorithms, WAOA 2023, held in Amsterdam, The Netherlands, during September 7–8, 2023 The 16 full papers included in this book are carefully reviewed and selected from 43 submissions. The topics of WAOA 2023 were algorithmic game theory, algorithmic trading, coloring and partitioning, competitive analysis, computational advertising, computational finance, cuts and connectivity, FPT-approximation algorithms, geometric problems, graph algorithms, inapproximability results, mechanism design, network design, packing and covering, paradigms for the design and analysis of approximation and online algorithms, resource augmentation, and scheduling problems
Residuated Structures in Algebra and Logic
Author: George Metcalfe
Publisher: American Mathematical Society
ISBN: 1470469855
Category : Mathematics
Languages : en
Pages : 282
Book Description
This book is an introduction to residuated structures, viewed as a common thread binding together algebra and logic. The framework includes well-studied structures from classical abstract algebra such as lattice-ordered groups and ideals of rings, as well as structures serving as algebraic semantics for substructural and other non-classical logics. Crucially, classes of these structures are studied both algebraically, yielding a rich structure theory along the lines of Conrad's program for lattice-ordered groups, and algorithmically, via analytic sequent or hypersequent calculi. These perspectives are related using a natural notion of equivalence for consequence relations that provides a bridge offering benefits to both sides. Algorithmic methods are used to establish properties like decidability, amalgamation, and generation by subclasses, while new insights into logical systems are obtained by studying associated classes of structures. The book is designed to serve the purposes of novices and experts alike. The first three chapters provide a gentle introduction to the subject, while subsequent chapters provide a state-of-the-art account of recent developments in the field.
Publisher: American Mathematical Society
ISBN: 1470469855
Category : Mathematics
Languages : en
Pages : 282
Book Description
This book is an introduction to residuated structures, viewed as a common thread binding together algebra and logic. The framework includes well-studied structures from classical abstract algebra such as lattice-ordered groups and ideals of rings, as well as structures serving as algebraic semantics for substructural and other non-classical logics. Crucially, classes of these structures are studied both algebraically, yielding a rich structure theory along the lines of Conrad's program for lattice-ordered groups, and algorithmically, via analytic sequent or hypersequent calculi. These perspectives are related using a natural notion of equivalence for consequence relations that provides a bridge offering benefits to both sides. Algorithmic methods are used to establish properties like decidability, amalgamation, and generation by subclasses, while new insights into logical systems are obtained by studying associated classes of structures. The book is designed to serve the purposes of novices and experts alike. The first three chapters provide a gentle introduction to the subject, while subsequent chapters provide a state-of-the-art account of recent developments in the field.
Self-similar and Self-affine Sets and Measures
Author: Balázs Bárány
Publisher: American Mathematical Society
ISBN: 1470470462
Category : Mathematics
Languages : en
Pages : 466
Book Description
Although there is no precise definition of a “fractal”, it is usually understood to be a set whose smaller parts, when magnified, resemble the whole. Self-similar and self-affine sets are those for which this resemblance is precise and given by a contracting similitude or affine transformation. The present book is devoted to this most basic class of fractal objects. The book contains both introductory material for beginners and more advanced topics, which continue to be the focus of active research. Among the latter are self-similar sets and measures with overlaps, including the much-studied infinite Bernoulli convolutions. Self-affine systems pose additional challenges; their study is often based on ergodic theory and dynamical systems methods. In the last twenty years there have been many breakthroughs in these fields, and our aim is to give introduction to some of them, often in the simplest nontrivial cases. The book is intended for a wide audience of mathematicians interested in fractal geometry, including students. Parts of the book can be used for graduate and even advanced undergraduate courses.
Publisher: American Mathematical Society
ISBN: 1470470462
Category : Mathematics
Languages : en
Pages : 466
Book Description
Although there is no precise definition of a “fractal”, it is usually understood to be a set whose smaller parts, when magnified, resemble the whole. Self-similar and self-affine sets are those for which this resemblance is precise and given by a contracting similitude or affine transformation. The present book is devoted to this most basic class of fractal objects. The book contains both introductory material for beginners and more advanced topics, which continue to be the focus of active research. Among the latter are self-similar sets and measures with overlaps, including the much-studied infinite Bernoulli convolutions. Self-affine systems pose additional challenges; their study is often based on ergodic theory and dynamical systems methods. In the last twenty years there have been many breakthroughs in these fields, and our aim is to give introduction to some of them, often in the simplest nontrivial cases. The book is intended for a wide audience of mathematicians interested in fractal geometry, including students. Parts of the book can be used for graduate and even advanced undergraduate courses.
Completion Problems on Operator Matrices
Author: Dragana S. Cvetković Ilić
Publisher: American Mathematical Society
ISBN: 1470469871
Category : Mathematics
Languages : en
Pages : 170
Book Description
Completion problems for operator matrices are concerned with the question of whether a partially specified operator matrix can be completed to form an operator of a desired type. The research devoted to this topic provides an excellent means to investigate the structure of operators. This book provides an overview of completion problems dealing with completions to different types of operators and can be considered as a natural extension of classical results concerned with matrix completions. The book assumes some basic familiarity with functional analysis and operator theory. It will be useful for graduate students and researchers interested in operator theory and the problem of matrix completions.
Publisher: American Mathematical Society
ISBN: 1470469871
Category : Mathematics
Languages : en
Pages : 170
Book Description
Completion problems for operator matrices are concerned with the question of whether a partially specified operator matrix can be completed to form an operator of a desired type. The research devoted to this topic provides an excellent means to investigate the structure of operators. This book provides an overview of completion problems dealing with completions to different types of operators and can be considered as a natural extension of classical results concerned with matrix completions. The book assumes some basic familiarity with functional analysis and operator theory. It will be useful for graduate students and researchers interested in operator theory and the problem of matrix completions.