Author: Yves Tillé
Publisher: Springer Science & Business Media
ISBN: 9780387308142
Category : Computers
Languages : en
Pages : 240
Book Description
Over the last few decades, important progresses in the methods of sampling have been achieved. This book draws up an inventory of new methods that can be useful for selecting samples. Forty-six sampling methods are described in the framework of general theory. The algorithms are described rigorously, which allows implementing directly the described methods. This book is aimed at experienced statisticians who are familiar with the theory of survey sampling.Yves Tillé is a professor at the University of Neuchâtel (Switzerland)
Sampling Algorithms
Author: Yves Tillé
Publisher: Springer Science & Business Media
ISBN: 9780387308142
Category : Computers
Languages : en
Pages : 240
Book Description
Over the last few decades, important progresses in the methods of sampling have been achieved. This book draws up an inventory of new methods that can be useful for selecting samples. Forty-six sampling methods are described in the framework of general theory. The algorithms are described rigorously, which allows implementing directly the described methods. This book is aimed at experienced statisticians who are familiar with the theory of survey sampling.Yves Tillé is a professor at the University of Neuchâtel (Switzerland)
Publisher: Springer Science & Business Media
ISBN: 9780387308142
Category : Computers
Languages : en
Pages : 240
Book Description
Over the last few decades, important progresses in the methods of sampling have been achieved. This book draws up an inventory of new methods that can be useful for selecting samples. Forty-six sampling methods are described in the framework of general theory. The algorithms are described rigorously, which allows implementing directly the described methods. This book is aimed at experienced statisticians who are familiar with the theory of survey sampling.Yves Tillé is a professor at the University of Neuchâtel (Switzerland)
Counting, Sampling and Integrating: Algorithms and Complexity
Author: Mark Jerrum
Publisher: Birkhäuser
ISBN: 3034880057
Category : Mathematics
Languages : en
Pages : 120
Book Description
The subject of these notes is counting and related topics, viewed from a computational perspective. A major theme of the book is the idea of accumulating information about a set of combinatorial structures by performing a random walk on those structures. These notes will be of value not only to teachers of postgraduate courses on these topics, but also to established researchers. For the first time this body of knowledge has been brought together in a single volume.
Publisher: Birkhäuser
ISBN: 3034880057
Category : Mathematics
Languages : en
Pages : 120
Book Description
The subject of these notes is counting and related topics, viewed from a computational perspective. A major theme of the book is the idea of accumulating information about a set of combinatorial structures by performing a random walk on those structures. These notes will be of value not only to teachers of postgraduate courses on these topics, but also to established researchers. For the first time this body of knowledge has been brought together in a single volume.
Intelligent Algorithms
Author: Han Huang
Publisher: Elsevier
ISBN: 0443217599
Category : Computers
Languages : en
Pages : 253
Book Description
In this book, the latest achievements of the computation time analysis theory and practical applications of intelligent algorithms are set out. There are five chapters: (1) new method of intelligent algorithm computation time analysis; (2)Application of intelligent algorithms in computer vision; (3)Application of intelligent algorithms in logistics scheduling; (4)Application of intelligent algorithms in software testing; and (5) application of intelligent algorithm in multi-objective optimization. The content of each chapter is supported by papers published in top journals. The authors introduce the work of each part, which mainly includes a brief introduction (mainly for readers to understand) and academic discussion (rigorous theoretical and experimental support), in a vivid and interesting way through excellent pictures and literary compositions. To help readers learn and make progress together, each part of this book provides relevant literature, code, experimental data, and so on. - Integrates the theoretical analysis results of intelligent algorithms, which is convenient for the majority of researchers to deeply understand the theoretical analysis results of intelligent algorithms and further supplement and improve the theoretical research of intelligent algorithms - Opens up readers' understanding of the theoretical level of intelligent algorithms and spreads the inherent charm of intelligent algorithms - Integrates the diverse knowledge of society and provides a more comprehensive and scientific knowledge of intelligent algorithm theory
Publisher: Elsevier
ISBN: 0443217599
Category : Computers
Languages : en
Pages : 253
Book Description
In this book, the latest achievements of the computation time analysis theory and practical applications of intelligent algorithms are set out. There are five chapters: (1) new method of intelligent algorithm computation time analysis; (2)Application of intelligent algorithms in computer vision; (3)Application of intelligent algorithms in logistics scheduling; (4)Application of intelligent algorithms in software testing; and (5) application of intelligent algorithm in multi-objective optimization. The content of each chapter is supported by papers published in top journals. The authors introduce the work of each part, which mainly includes a brief introduction (mainly for readers to understand) and academic discussion (rigorous theoretical and experimental support), in a vivid and interesting way through excellent pictures and literary compositions. To help readers learn and make progress together, each part of this book provides relevant literature, code, experimental data, and so on. - Integrates the theoretical analysis results of intelligent algorithms, which is convenient for the majority of researchers to deeply understand the theoretical analysis results of intelligent algorithms and further supplement and improve the theoretical research of intelligent algorithms - Opens up readers' understanding of the theoretical level of intelligent algorithms and spreads the inherent charm of intelligent algorithms - Integrates the diverse knowledge of society and provides a more comprehensive and scientific knowledge of intelligent algorithm theory
Algorithms, Probability, Networks, and Games
Author: Christos Zaroliagis
Publisher: Springer
ISBN: 3319240242
Category : Computers
Languages : en
Pages : 418
Book Description
This Festschrift volume is published in honor of Professor Paul G. Spirakis on the occasion of his 60th birthday. It celebrates his significant contributions to computer science as an eminent, talented, and influential researcher and most visionary thought leader, with a great talent in inspiring and guiding young researchers. The book is a reflection of his main research activities in the fields of algorithms, probability, networks, and games, and contains a biographical sketch as well as essays and research contributions from close collaborators and former PhD students.
Publisher: Springer
ISBN: 3319240242
Category : Computers
Languages : en
Pages : 418
Book Description
This Festschrift volume is published in honor of Professor Paul G. Spirakis on the occasion of his 60th birthday. It celebrates his significant contributions to computer science as an eminent, talented, and influential researcher and most visionary thought leader, with a great talent in inspiring and guiding young researchers. The book is a reflection of his main research activities in the fields of algorithms, probability, networks, and games, and contains a biographical sketch as well as essays and research contributions from close collaborators and former PhD students.
Handbook of Approximation Algorithms and Metaheuristics
Author: Teofilo F. Gonzalez
Publisher: CRC Press
ISBN: 1351235400
Category : Computers
Languages : en
Pages : 840
Book Description
Handbook of Approximation Algorithms and Metaheuristics, Second Edition reflects the tremendous growth in the field, over the past two decades. Through contributions from leading experts, this handbook provides a comprehensive introduction to the underlying theory and methodologies, as well as the various applications of approximation algorithms and metaheuristics. Volume 1 of this two-volume set deals primarily with methodologies and traditional applications. It includes restriction, relaxation, local ratio, approximation schemes, randomization, tabu search, evolutionary computation, local search, neural networks, and other metaheuristics. It also explores multi-objective optimization, reoptimization, sensitivity analysis, and stability. Traditional applications covered include: bin packing, multi-dimensional packing, Steiner trees, traveling salesperson, scheduling, and related problems. Volume 2 focuses on the contemporary and emerging applications of methodologies to problems in combinatorial optimization, computational geometry and graphs problems, as well as in large-scale and emerging application areas. It includes approximation algorithms and heuristics for clustering, networks (sensor and wireless), communication, bioinformatics search, streams, virtual communities, and more. About the Editor Teofilo F. Gonzalez is a professor emeritus of computer science at the University of California, Santa Barbara. He completed his Ph.D. in 1975 from the University of Minnesota. He taught at the University of Oklahoma, the Pennsylvania State University, and the University of Texas at Dallas, before joining the UCSB computer science faculty in 1984. He spent sabbatical leaves at the Monterrey Institute of Technology and Higher Education and Utrecht University. He is known for his highly cited pioneering research in the hardness of approximation; for his sublinear and best possible approximation algorithm for k-tMM clustering; for introducing the open-shop scheduling problem as well as algorithms for its solution that have found applications in numerous research areas; as well as for his research on problems in the areas of job scheduling, graph algorithms, computational geometry, message communication, wire routing, etc.
Publisher: CRC Press
ISBN: 1351235400
Category : Computers
Languages : en
Pages : 840
Book Description
Handbook of Approximation Algorithms and Metaheuristics, Second Edition reflects the tremendous growth in the field, over the past two decades. Through contributions from leading experts, this handbook provides a comprehensive introduction to the underlying theory and methodologies, as well as the various applications of approximation algorithms and metaheuristics. Volume 1 of this two-volume set deals primarily with methodologies and traditional applications. It includes restriction, relaxation, local ratio, approximation schemes, randomization, tabu search, evolutionary computation, local search, neural networks, and other metaheuristics. It also explores multi-objective optimization, reoptimization, sensitivity analysis, and stability. Traditional applications covered include: bin packing, multi-dimensional packing, Steiner trees, traveling salesperson, scheduling, and related problems. Volume 2 focuses on the contemporary and emerging applications of methodologies to problems in combinatorial optimization, computational geometry and graphs problems, as well as in large-scale and emerging application areas. It includes approximation algorithms and heuristics for clustering, networks (sensor and wireless), communication, bioinformatics search, streams, virtual communities, and more. About the Editor Teofilo F. Gonzalez is a professor emeritus of computer science at the University of California, Santa Barbara. He completed his Ph.D. in 1975 from the University of Minnesota. He taught at the University of Oklahoma, the Pennsylvania State University, and the University of Texas at Dallas, before joining the UCSB computer science faculty in 1984. He spent sabbatical leaves at the Monterrey Institute of Technology and Higher Education and Utrecht University. He is known for his highly cited pioneering research in the hardness of approximation; for his sublinear and best possible approximation algorithm for k-tMM clustering; for introducing the open-shop scheduling problem as well as algorithms for its solution that have found applications in numerous research areas; as well as for his research on problems in the areas of job scheduling, graph algorithms, computational geometry, message communication, wire routing, etc.
Algorithms and Data Structures for Massive Datasets
Author: Dzejla Medjedovic
Publisher: Simon and Schuster
ISBN: 1638356564
Category : Computers
Languages : en
Pages : 302
Book Description
Massive modern datasets make traditional data structures and algorithms grind to a halt. This fun and practical guide introduces cutting-edge techniques that can reliably handle even the largest distributed datasets. In Algorithms and Data Structures for Massive Datasets you will learn: Probabilistic sketching data structures for practical problems Choosing the right database engine for your application Evaluating and designing efficient on-disk data structures and algorithms Understanding the algorithmic trade-offs involved in massive-scale systems Deriving basic statistics from streaming data Correctly sampling streaming data Computing percentiles with limited space resources Algorithms and Data Structures for Massive Datasets reveals a toolbox of new methods that are perfect for handling modern big data applications. You’ll explore the novel data structures and algorithms that underpin Google, Facebook, and other enterprise applications that work with truly massive amounts of data. These effective techniques can be applied to any discipline, from finance to text analysis. Graphics, illustrations, and hands-on industry examples make complex ideas practical to implement in your projects—and there’s no mathematical proofs to puzzle over. Work through this one-of-a-kind guide, and you’ll find the sweet spot of saving space without sacrificing your data’s accuracy. About the technology Standard algorithms and data structures may become slow—or fail altogether—when applied to large distributed datasets. Choosing algorithms designed for big data saves time, increases accuracy, and reduces processing cost. This unique book distills cutting-edge research papers into practical techniques for sketching, streaming, and organizing massive datasets on-disk and in the cloud. About the book Algorithms and Data Structures for Massive Datasets introduces processing and analytics techniques for large distributed data. Packed with industry stories and entertaining illustrations, this friendly guide makes even complex concepts easy to understand. You’ll explore real-world examples as you learn to map powerful algorithms like Bloom filters, Count-min sketch, HyperLogLog, and LSM-trees to your own use cases. What's inside Probabilistic sketching data structures Choosing the right database engine Designing efficient on-disk data structures and algorithms Algorithmic tradeoffs in massive-scale systems Computing percentiles with limited space resources About the reader Examples in Python, R, and pseudocode. About the author Dzejla Medjedovic earned her PhD in the Applied Algorithms Lab at Stony Brook University, New York. Emin Tahirovic earned his PhD in biostatistics from University of Pennsylvania. Illustrator Ines Dedovic earned her PhD at the Institute for Imaging and Computer Vision at RWTH Aachen University, Germany. Table of Contents 1 Introduction PART 1 HASH-BASED SKETCHES 2 Review of hash tables and modern hashing 3 Approximate membership: Bloom and quotient filters 4 Frequency estimation and count-min sketch 5 Cardinality estimation and HyperLogLog PART 2 REAL-TIME ANALYTICS 6 Streaming data: Bringing everything together 7 Sampling from data streams 8 Approximate quantiles on data streams PART 3 DATA STRUCTURES FOR DATABASES AND EXTERNAL MEMORY ALGORITHMS 9 Introducing the external memory model 10 Data structures for databases: B-trees, Bε-trees, and LSM-trees 11 External memory sorting
Publisher: Simon and Schuster
ISBN: 1638356564
Category : Computers
Languages : en
Pages : 302
Book Description
Massive modern datasets make traditional data structures and algorithms grind to a halt. This fun and practical guide introduces cutting-edge techniques that can reliably handle even the largest distributed datasets. In Algorithms and Data Structures for Massive Datasets you will learn: Probabilistic sketching data structures for practical problems Choosing the right database engine for your application Evaluating and designing efficient on-disk data structures and algorithms Understanding the algorithmic trade-offs involved in massive-scale systems Deriving basic statistics from streaming data Correctly sampling streaming data Computing percentiles with limited space resources Algorithms and Data Structures for Massive Datasets reveals a toolbox of new methods that are perfect for handling modern big data applications. You’ll explore the novel data structures and algorithms that underpin Google, Facebook, and other enterprise applications that work with truly massive amounts of data. These effective techniques can be applied to any discipline, from finance to text analysis. Graphics, illustrations, and hands-on industry examples make complex ideas practical to implement in your projects—and there’s no mathematical proofs to puzzle over. Work through this one-of-a-kind guide, and you’ll find the sweet spot of saving space without sacrificing your data’s accuracy. About the technology Standard algorithms and data structures may become slow—or fail altogether—when applied to large distributed datasets. Choosing algorithms designed for big data saves time, increases accuracy, and reduces processing cost. This unique book distills cutting-edge research papers into practical techniques for sketching, streaming, and organizing massive datasets on-disk and in the cloud. About the book Algorithms and Data Structures for Massive Datasets introduces processing and analytics techniques for large distributed data. Packed with industry stories and entertaining illustrations, this friendly guide makes even complex concepts easy to understand. You’ll explore real-world examples as you learn to map powerful algorithms like Bloom filters, Count-min sketch, HyperLogLog, and LSM-trees to your own use cases. What's inside Probabilistic sketching data structures Choosing the right database engine Designing efficient on-disk data structures and algorithms Algorithmic tradeoffs in massive-scale systems Computing percentiles with limited space resources About the reader Examples in Python, R, and pseudocode. About the author Dzejla Medjedovic earned her PhD in the Applied Algorithms Lab at Stony Brook University, New York. Emin Tahirovic earned his PhD in biostatistics from University of Pennsylvania. Illustrator Ines Dedovic earned her PhD at the Institute for Imaging and Computer Vision at RWTH Aachen University, Germany. Table of Contents 1 Introduction PART 1 HASH-BASED SKETCHES 2 Review of hash tables and modern hashing 3 Approximate membership: Bloom and quotient filters 4 Frequency estimation and count-min sketch 5 Cardinality estimation and HyperLogLog PART 2 REAL-TIME ANALYTICS 6 Streaming data: Bringing everything together 7 Sampling from data streams 8 Approximate quantiles on data streams PART 3 DATA STRUCTURES FOR DATABASES AND EXTERNAL MEMORY ALGORITHMS 9 Introducing the external memory model 10 Data structures for databases: B-trees, Bε-trees, and LSM-trees 11 External memory sorting
Combinatorial Algorithms
Author: Jiri Fiala
Publisher: Springer Science & Business Media
ISBN: 3642102166
Category : Computers
Languages : en
Pages : 491
Book Description
The 20th InternationalWorkshop on CombinatorialAlgorithms was held during June 28 – July 2, 2009 in the picturesque castle of Hradec nad Moravic´ ?,located in the north-east corner of the Czech Republic. IWOCA — the workshopthat originated19 yearsagoas AWOCA— madea big step towards globalization this year. After 19 conferences held in Australia, Indonesia, Korea,and Japan, the 20th anniversarywas celebrated by taking the conference outside the Australasian region for the ?rst time. Another novelty this year was that the proceedings are being published by Springer in the LNCS series. Our Call for Papers brought an overwhelming response of the combinatorial community. IWOCA 2009 received over 100 submissions, more than twice the amount it received before. Most of the submissions were of exceptionally high quality and thus the Program Committee was faced with hard work and so- times hard decisions. Many very good papers had to be rejected because of the limitedcapacityoftheconferenceschedule.In the end,41contributedtalkswere presented during the conference — the maximum number that we could ?t in the program. We would like to thank all who sent their submissions and to congratulate all the authors of the accepted papers. They contributed to what was a most successful conference. We also thank all the authors who submitted posters for the poster session (not included in the proceedings).
Publisher: Springer Science & Business Media
ISBN: 3642102166
Category : Computers
Languages : en
Pages : 491
Book Description
The 20th InternationalWorkshop on CombinatorialAlgorithms was held during June 28 – July 2, 2009 in the picturesque castle of Hradec nad Moravic´ ?,located in the north-east corner of the Czech Republic. IWOCA — the workshopthat originated19 yearsagoas AWOCA— madea big step towards globalization this year. After 19 conferences held in Australia, Indonesia, Korea,and Japan, the 20th anniversarywas celebrated by taking the conference outside the Australasian region for the ?rst time. Another novelty this year was that the proceedings are being published by Springer in the LNCS series. Our Call for Papers brought an overwhelming response of the combinatorial community. IWOCA 2009 received over 100 submissions, more than twice the amount it received before. Most of the submissions were of exceptionally high quality and thus the Program Committee was faced with hard work and so- times hard decisions. Many very good papers had to be rejected because of the limitedcapacityoftheconferenceschedule.In the end,41contributedtalkswere presented during the conference — the maximum number that we could ?t in the program. We would like to thank all who sent their submissions and to congratulate all the authors of the accepted papers. They contributed to what was a most successful conference. We also thank all the authors who submitted posters for the poster session (not included in the proceedings).
Genetic Algorithms and their Applications
Author: John J. Grefenstette
Publisher: Psychology Press
ISBN: 1134989806
Category : Psychology
Languages : en
Pages : 629
Book Description
First Published in 1987. This is the collected proceedings of the second International Conference on Genetic Algorithms held at the Massachusetts Institute of Technology, Cambridge, MA on the 28th to the 31st July 1987. With papers on Genetic search theory, Adaptive search operators, representation issues, connectionism and parallelism, credit assignment ad learning, and applications.
Publisher: Psychology Press
ISBN: 1134989806
Category : Psychology
Languages : en
Pages : 629
Book Description
First Published in 1987. This is the collected proceedings of the second International Conference on Genetic Algorithms held at the Massachusetts Institute of Technology, Cambridge, MA on the 28th to the 31st July 1987. With papers on Genetic search theory, Adaptive search operators, representation issues, connectionism and parallelism, credit assignment ad learning, and applications.
Learning Automata Approach for Social Networks
Author: Alireza Rezvanian
Publisher: Springer
ISBN: 3030107671
Category : Technology & Engineering
Languages : en
Pages : 339
Book Description
This book begins by briefly explaining learning automata (LA) models and a recently developed cellular learning automaton (CLA) named wavefront CLA. Analyzing social networks is increasingly important, so as to identify behavioral patterns in interactions among individuals and in the networks’ evolution, and to develop the algorithms required for meaningful analysis. As an emerging artificial intelligence research area, learning automata (LA) has already had a significant impact in many areas of social networks. Here, the research areas related to learning and social networks are addressed from bibliometric and network analysis perspectives. In turn, the second part of the book highlights a range of LA-based applications addressing social network problems, from network sampling, community detection, link prediction, and trust management, to recommender systems and finally influence maximization. Given its scope, the book offers a valuable guide for all researchers whose work involves reinforcement learning, social networks and/or artificial intelligence.
Publisher: Springer
ISBN: 3030107671
Category : Technology & Engineering
Languages : en
Pages : 339
Book Description
This book begins by briefly explaining learning automata (LA) models and a recently developed cellular learning automaton (CLA) named wavefront CLA. Analyzing social networks is increasingly important, so as to identify behavioral patterns in interactions among individuals and in the networks’ evolution, and to develop the algorithms required for meaningful analysis. As an emerging artificial intelligence research area, learning automata (LA) has already had a significant impact in many areas of social networks. Here, the research areas related to learning and social networks are addressed from bibliometric and network analysis perspectives. In turn, the second part of the book highlights a range of LA-based applications addressing social network problems, from network sampling, community detection, link prediction, and trust management, to recommender systems and finally influence maximization. Given its scope, the book offers a valuable guide for all researchers whose work involves reinforcement learning, social networks and/or artificial intelligence.
Simulation-Based Algorithms for Markov Decision Processes
Author: Hyeong Soo Chang
Publisher: Springer Science & Business Media
ISBN: 1447150228
Category : Technology & Engineering
Languages : en
Pages : 241
Book Description
Markov decision process (MDP) models are widely used for modeling sequential decision-making problems that arise in engineering, economics, computer science, and the social sciences. Many real-world problems modeled by MDPs have huge state and/or action spaces, giving an opening to the curse of dimensionality and so making practical solution of the resulting models intractable. In other cases, the system of interest is too complex to allow explicit specification of some of the MDP model parameters, but simulation samples are readily available (e.g., for random transitions and costs). For these settings, various sampling and population-based algorithms have been developed to overcome the difficulties of computing an optimal solution in terms of a policy and/or value function. Specific approaches include adaptive sampling, evolutionary policy iteration, evolutionary random policy search, and model reference adaptive search. This substantially enlarged new edition reflects the latest developments in novel algorithms and their underpinning theories, and presents an updated account of the topics that have emerged since the publication of the first edition. Includes: innovative material on MDPs, both in constrained settings and with uncertain transition properties; game-theoretic method for solving MDPs; theories for developing roll-out based algorithms; and details of approximation stochastic annealing, a population-based on-line simulation-based algorithm. The self-contained approach of this book will appeal not only to researchers in MDPs, stochastic modeling, and control, and simulation but will be a valuable source of tuition and reference for students of control and operations research.
Publisher: Springer Science & Business Media
ISBN: 1447150228
Category : Technology & Engineering
Languages : en
Pages : 241
Book Description
Markov decision process (MDP) models are widely used for modeling sequential decision-making problems that arise in engineering, economics, computer science, and the social sciences. Many real-world problems modeled by MDPs have huge state and/or action spaces, giving an opening to the curse of dimensionality and so making practical solution of the resulting models intractable. In other cases, the system of interest is too complex to allow explicit specification of some of the MDP model parameters, but simulation samples are readily available (e.g., for random transitions and costs). For these settings, various sampling and population-based algorithms have been developed to overcome the difficulties of computing an optimal solution in terms of a policy and/or value function. Specific approaches include adaptive sampling, evolutionary policy iteration, evolutionary random policy search, and model reference adaptive search. This substantially enlarged new edition reflects the latest developments in novel algorithms and their underpinning theories, and presents an updated account of the topics that have emerged since the publication of the first edition. Includes: innovative material on MDPs, both in constrained settings and with uncertain transition properties; game-theoretic method for solving MDPs; theories for developing roll-out based algorithms; and details of approximation stochastic annealing, a population-based on-line simulation-based algorithm. The self-contained approach of this book will appeal not only to researchers in MDPs, stochastic modeling, and control, and simulation but will be a valuable source of tuition and reference for students of control and operations research.