Author: Ronald W. Butler
Publisher: Cambridge University Press
ISBN: 1139466518
Category : Mathematics
Languages : en
Pages : 548
Book Description
Modern statistical methods use complex, sophisticated models that can lead to intractable computations. Saddlepoint approximations can be the answer. Written from the user's point of view, this book explains in clear language how such approximate probability computations are made, taking readers from the very beginnings to current applications. The core material is presented in chapters 1-6 at an elementary mathematical level. Chapters 7-9 then give a highly readable account of higher-order asymptotic inference. Later chapters address areas where saddlepoint methods have had substantial impact: multivariate testing, stochastic systems and applied probability, bootstrap implementation in the transform domain, and Bayesian computation and inference. No previous background in the area is required. Data examples from real applications demonstrate the practical value of the methods. Ideal for graduate students and researchers in statistics, biostatistics, electrical engineering, econometrics, and applied mathematics, this is both an entry-level text and a valuable reference.
Saddlepoint Approximations with Applications
Author: Ronald W. Butler
Publisher: Cambridge University Press
ISBN: 1139466518
Category : Mathematics
Languages : en
Pages : 548
Book Description
Modern statistical methods use complex, sophisticated models that can lead to intractable computations. Saddlepoint approximations can be the answer. Written from the user's point of view, this book explains in clear language how such approximate probability computations are made, taking readers from the very beginnings to current applications. The core material is presented in chapters 1-6 at an elementary mathematical level. Chapters 7-9 then give a highly readable account of higher-order asymptotic inference. Later chapters address areas where saddlepoint methods have had substantial impact: multivariate testing, stochastic systems and applied probability, bootstrap implementation in the transform domain, and Bayesian computation and inference. No previous background in the area is required. Data examples from real applications demonstrate the practical value of the methods. Ideal for graduate students and researchers in statistics, biostatistics, electrical engineering, econometrics, and applied mathematics, this is both an entry-level text and a valuable reference.
Publisher: Cambridge University Press
ISBN: 1139466518
Category : Mathematics
Languages : en
Pages : 548
Book Description
Modern statistical methods use complex, sophisticated models that can lead to intractable computations. Saddlepoint approximations can be the answer. Written from the user's point of view, this book explains in clear language how such approximate probability computations are made, taking readers from the very beginnings to current applications. The core material is presented in chapters 1-6 at an elementary mathematical level. Chapters 7-9 then give a highly readable account of higher-order asymptotic inference. Later chapters address areas where saddlepoint methods have had substantial impact: multivariate testing, stochastic systems and applied probability, bootstrap implementation in the transform domain, and Bayesian computation and inference. No previous background in the area is required. Data examples from real applications demonstrate the practical value of the methods. Ideal for graduate students and researchers in statistics, biostatistics, electrical engineering, econometrics, and applied mathematics, this is both an entry-level text and a valuable reference.
Saddlepoint Approximations
Author: Jens Ledet Jensen
Publisher: Oxford University Press
ISBN: 9780198522959
Category : Mathematics
Languages : en
Pages : 348
Book Description
This book explains the ideas behind the saddlepoint approximations as well as giving a detailed mathematical description of the subject and many worked out examples.
Publisher: Oxford University Press
ISBN: 9780198522959
Category : Mathematics
Languages : en
Pages : 348
Book Description
This book explains the ideas behind the saddlepoint approximations as well as giving a detailed mathematical description of the subject and many worked out examples.
Analytic Combinatorics
Author: Philippe Flajolet
Publisher: Cambridge University Press
ISBN: 1139477161
Category : Mathematics
Languages : en
Pages : 825
Book Description
Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.
Publisher: Cambridge University Press
ISBN: 1139477161
Category : Mathematics
Languages : en
Pages : 825
Book Description
Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.
Asymptotic Theory of Statistics and Probability
Author: Anirban DasGupta
Publisher: Springer Science & Business Media
ISBN: 0387759700
Category : Mathematics
Languages : en
Pages : 726
Book Description
This unique book delivers an encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools. The book is unique in its detailed coverage of fundamental topics. It is written in an extremely lucid style, with an emphasis on the conceptual discussion of the importance of a problem and the impact and relevance of the theorems. There is no other book in large sample theory that matches this book in coverage, exercises and examples, bibliography, and lucid conceptual discussion of issues and theorems.
Publisher: Springer Science & Business Media
ISBN: 0387759700
Category : Mathematics
Languages : en
Pages : 726
Book Description
This unique book delivers an encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools. The book is unique in its detailed coverage of fundamental topics. It is written in an extremely lucid style, with an emphasis on the conceptual discussion of the importance of a problem and the impact and relevance of the theorems. There is no other book in large sample theory that matches this book in coverage, exercises and examples, bibliography, and lucid conceptual discussion of issues and theorems.
Series Approximation Methods in Statistics
Author: John E. Kolassa
Publisher: Springer Science & Business Media
ISBN: 1475742754
Category : Mathematics
Languages : en
Pages : 162
Book Description
This book was originally compiled for a course I taught at the University of Rochester in the fall of 1991, and is intended to give advanced graduate students in statistics an introduction to Edgeworth and saddlepoint approximations, and related techniques. Many other authors have also written monographs on this subject, and so this work is narrowly focused on two areas not recently discussed in theoretical text books. These areas are, first, a rigorous consideration of Edgeworth and saddlepoint expansion limit theorems, and second, a survey of the more recent developments in the field. In presenting expansion limit theorems I have drawn heavily 011 notation of McCullagh (1987) and on the theorems presented by Feller (1971) on Edgeworth expansions. For saddlepoint notation and results I relied most heavily on the many papers of Daniels, and a review paper by Reid (1988). Throughout this book I have tried to maintain consistent notation and to present theorems in such a way as to make a few theoretical results useful in as many contexts as possible. This was not only in order to present as many results with as few proofs as possible, but more importantly to show the interconnections between the various facets of asymptotic theory. Special attention is paid to regularity conditions. The reasons they are needed and the parts they play in the proofs are both highlighted.
Publisher: Springer Science & Business Media
ISBN: 1475742754
Category : Mathematics
Languages : en
Pages : 162
Book Description
This book was originally compiled for a course I taught at the University of Rochester in the fall of 1991, and is intended to give advanced graduate students in statistics an introduction to Edgeworth and saddlepoint approximations, and related techniques. Many other authors have also written monographs on this subject, and so this work is narrowly focused on two areas not recently discussed in theoretical text books. These areas are, first, a rigorous consideration of Edgeworth and saddlepoint expansion limit theorems, and second, a survey of the more recent developments in the field. In presenting expansion limit theorems I have drawn heavily 011 notation of McCullagh (1987) and on the theorems presented by Feller (1971) on Edgeworth expansions. For saddlepoint notation and results I relied most heavily on the many papers of Daniels, and a review paper by Reid (1988). Throughout this book I have tried to maintain consistent notation and to present theorems in such a way as to make a few theoretical results useful in as many contexts as possible. This was not only in order to present as many results with as few proofs as possible, but more importantly to show the interconnections between the various facets of asymptotic theory. Special attention is paid to regularity conditions. The reasons they are needed and the parts they play in the proofs are both highlighted.
Asymptotic Approximations of Integrals
Author: R. Wong
Publisher: Academic Press
ISBN: 1483220710
Category : Mathematics
Languages : en
Pages : 561
Book Description
Asymptotic Approximations of Integrals deals with the methods used in the asymptotic approximation of integrals. Topics covered range from logarithmic singularities and the summability method to the distributional approach and the Mellin transform technique for multiple integrals. Uniform asymptotic expansions via a rational transformation are also discussed, along with double integrals with a curve of stationary points. For completeness, classical methods are examined as well. Comprised of nine chapters, this volume begins with an introduction to the fundamental concepts of asymptotics, followed by a discussion on classical techniques used in the asymptotic evaluation of integrals, including Laplace's method, Mellin transform techniques, and the summability method. Subsequent chapters focus on the elementary theory of distributions; the distributional approach; uniform asymptotic expansions; and integrals which depend on auxiliary parameters in addition to the asymptotic variable. The book concludes by considering double integrals and higher-dimensional integrals. This monograph is intended for graduate students and research workers in mathematics, physics, and engineering.
Publisher: Academic Press
ISBN: 1483220710
Category : Mathematics
Languages : en
Pages : 561
Book Description
Asymptotic Approximations of Integrals deals with the methods used in the asymptotic approximation of integrals. Topics covered range from logarithmic singularities and the summability method to the distributional approach and the Mellin transform technique for multiple integrals. Uniform asymptotic expansions via a rational transformation are also discussed, along with double integrals with a curve of stationary points. For completeness, classical methods are examined as well. Comprised of nine chapters, this volume begins with an introduction to the fundamental concepts of asymptotics, followed by a discussion on classical techniques used in the asymptotic evaluation of integrals, including Laplace's method, Mellin transform techniques, and the summability method. Subsequent chapters focus on the elementary theory of distributions; the distributional approach; uniform asymptotic expansions; and integrals which depend on auxiliary parameters in addition to the asymptotic variable. The book concludes by considering double integrals and higher-dimensional integrals. This monograph is intended for graduate students and research workers in mathematics, physics, and engineering.
Advanced Mean Field Methods
Author: Manfred Opper
Publisher: MIT Press
ISBN: 9780262150545
Category : Computers
Languages : en
Pages : 300
Book Description
This book covers the theoretical foundations of advanced mean field methods, explores the relation between the different approaches, examines the quality of the approximation obtained, and demonstrates their application to various areas of probabilistic modeling. A major problem in modern probabilistic modeling is the huge computational complexity involved in typical calculations with multivariate probability distributions when the number of random variables is large. Because exact computations are infeasible in such cases and Monte Carlo sampling techniques may reach their limits, there is a need for methods that allow for efficient approximate computations. One of the simplest approximations is based on the mean field method, which has a long history in statistical physics. The method is widely used, particularly in the growing field of graphical models. Researchers from disciplines such as statistical physics, computer science, and mathematical statistics are studying ways to improve this and related methods and are exploring novel application areas. Leading approaches include the variational approach, which goes beyond factorizable distributions to achieve systematic improvements; the TAP (Thouless-Anderson-Palmer) approach, which incorporates correlations by including effective reaction terms in the mean field theory; and the more general methods of graphical models. Bringing together ideas and techniques from these diverse disciplines, this book covers the theoretical foundations of advanced mean field methods, explores the relation between the different approaches, examines the quality of the approximation obtained, and demonstrates their application to various areas of probabilistic modeling.
Publisher: MIT Press
ISBN: 9780262150545
Category : Computers
Languages : en
Pages : 300
Book Description
This book covers the theoretical foundations of advanced mean field methods, explores the relation between the different approaches, examines the quality of the approximation obtained, and demonstrates their application to various areas of probabilistic modeling. A major problem in modern probabilistic modeling is the huge computational complexity involved in typical calculations with multivariate probability distributions when the number of random variables is large. Because exact computations are infeasible in such cases and Monte Carlo sampling techniques may reach their limits, there is a need for methods that allow for efficient approximate computations. One of the simplest approximations is based on the mean field method, which has a long history in statistical physics. The method is widely used, particularly in the growing field of graphical models. Researchers from disciplines such as statistical physics, computer science, and mathematical statistics are studying ways to improve this and related methods and are exploring novel application areas. Leading approaches include the variational approach, which goes beyond factorizable distributions to achieve systematic improvements; the TAP (Thouless-Anderson-Palmer) approach, which incorporates correlations by including effective reaction terms in the mean field theory; and the more general methods of graphical models. Bringing together ideas and techniques from these diverse disciplines, this book covers the theoretical foundations of advanced mean field methods, explores the relation between the different approaches, examines the quality of the approximation obtained, and demonstrates their application to various areas of probabilistic modeling.
Saddlepoint Approximation Methods in Financial Engineering
Author: Yue Kuen Kwok
Publisher: Springer
ISBN: 3319741012
Category : Mathematics
Languages : en
Pages : 134
Book Description
This book summarizes recent advances in applying saddlepoint approximation methods to financial engineering. It addresses pricing exotic financial derivatives and calculating risk contributions to Value-at-Risk and Expected Shortfall in credit portfolios under various default correlation models. These standard problems involve the computation of tail probabilities and tail expectations of the corresponding underlying state variables. The text offers in a single source most of the saddlepoint approximation results in financial engineering, with different sets of ready-to-use approximation formulas. Much of this material may otherwise only be found in original research publications. The exposition and style are made rigorous by providing formal proofs of most of the results. Starting with a presentation of the derivation of a variety of saddlepoint approximation formulas in different contexts, this book will help new researchers to learn the fine technicalities of the topic. It will also be valuable to quantitative analysts in financial institutions who strive for effective valuation of prices of exotic financial derivatives and risk positions of portfolios of risky instruments.
Publisher: Springer
ISBN: 3319741012
Category : Mathematics
Languages : en
Pages : 134
Book Description
This book summarizes recent advances in applying saddlepoint approximation methods to financial engineering. It addresses pricing exotic financial derivatives and calculating risk contributions to Value-at-Risk and Expected Shortfall in credit portfolios under various default correlation models. These standard problems involve the computation of tail probabilities and tail expectations of the corresponding underlying state variables. The text offers in a single source most of the saddlepoint approximation results in financial engineering, with different sets of ready-to-use approximation formulas. Much of this material may otherwise only be found in original research publications. The exposition and style are made rigorous by providing formal proofs of most of the results. Starting with a presentation of the derivation of a variety of saddlepoint approximation formulas in different contexts, this book will help new researchers to learn the fine technicalities of the topic. It will also be valuable to quantitative analysts in financial institutions who strive for effective valuation of prices of exotic financial derivatives and risk positions of portfolios of risky instruments.
Thinking Probabilistically
Author: Ariel Amir
Publisher: Cambridge University Press
ISBN: 1108479529
Category : Mathematics
Languages : en
Pages : 243
Book Description
An introductory text providing the reader with a thorough background to the rich world of applications of stochastic processes.
Publisher: Cambridge University Press
ISBN: 1108479529
Category : Mathematics
Languages : en
Pages : 243
Book Description
An introductory text providing the reader with a thorough background to the rich world of applications of stochastic processes.
Expansions and Asymptotics for Statistics
Author: Christopher G. Small
Publisher: CRC Press
ISBN: 1420011022
Category : Mathematics
Languages : en
Pages : 359
Book Description
Asymptotic methods provide important tools for approximating and analysing functions that arise in probability and statistics. Moreover, the conclusions of asymptotic analysis often supplement the conclusions obtained by numerical methods. Providing a broad toolkit of analytical methods, Expansions and Asymptotics for Statistics shows how asymptoti
Publisher: CRC Press
ISBN: 1420011022
Category : Mathematics
Languages : en
Pages : 359
Book Description
Asymptotic methods provide important tools for approximating and analysing functions that arise in probability and statistics. Moreover, the conclusions of asymptotic analysis often supplement the conclusions obtained by numerical methods. Providing a broad toolkit of analytical methods, Expansions and Asymptotics for Statistics shows how asymptoti