Rough Sets, Fuzzy Sets and Knowledge Discovery

Rough Sets, Fuzzy Sets and Knowledge Discovery PDF Author: Wojciech P. Ziarko
Publisher: Springer Science & Business Media
ISBN: 1447132386
Category : Computers
Languages : en
Pages : 486

Get Book Here

Book Description
The objective of this book is two-fold. Firstly, it is aimed at bringing to gether key research articles concerned with methodologies for knowledge discovery in databases and their applications. Secondly, it also contains articles discussing fundamentals of rough sets and their relationship to fuzzy sets, machine learning, management of uncertainty and systems of logic for formal reasoning about knowledge. Applications of rough sets in different areas such as medicine, logic design, image processing and expert systems are also represented. The articles included in the book are based on selected papers presented at the International Workshop on Rough Sets and Knowledge Discovery held in Banff, Canada in 1993. The primary methodological approach emphasized in the book is the mathematical theory of rough sets, a relatively new branch of mathematics concerned with the modeling and analysis of classification problems with imprecise, uncertain, or incomplete information. The methods of the theory of rough sets have applications in many sub-areas of artificial intelligence including knowledge discovery, machine learning, formal reasoning in the presence of uncertainty, knowledge acquisition, and others. This spectrum of applications is reflected in this book where articles, although centered around knowledge discovery problems, touch a number of related issues. The book is intended to provide an important reference material for students, researchers, and developers working in the areas of knowledge discovery, machine learning, reasoning with uncertainty, adaptive expert systems, and pattern classification.

Rough Sets, Fuzzy Sets and Knowledge Discovery

Rough Sets, Fuzzy Sets and Knowledge Discovery PDF Author: Wojciech P. Ziarko
Publisher: Springer Science & Business Media
ISBN: 1447132386
Category : Computers
Languages : en
Pages : 486

Get Book Here

Book Description
The objective of this book is two-fold. Firstly, it is aimed at bringing to gether key research articles concerned with methodologies for knowledge discovery in databases and their applications. Secondly, it also contains articles discussing fundamentals of rough sets and their relationship to fuzzy sets, machine learning, management of uncertainty and systems of logic for formal reasoning about knowledge. Applications of rough sets in different areas such as medicine, logic design, image processing and expert systems are also represented. The articles included in the book are based on selected papers presented at the International Workshop on Rough Sets and Knowledge Discovery held in Banff, Canada in 1993. The primary methodological approach emphasized in the book is the mathematical theory of rough sets, a relatively new branch of mathematics concerned with the modeling and analysis of classification problems with imprecise, uncertain, or incomplete information. The methods of the theory of rough sets have applications in many sub-areas of artificial intelligence including knowledge discovery, machine learning, formal reasoning in the presence of uncertainty, knowledge acquisition, and others. This spectrum of applications is reflected in this book where articles, although centered around knowledge discovery problems, touch a number of related issues. The book is intended to provide an important reference material for students, researchers, and developers working in the areas of knowledge discovery, machine learning, reasoning with uncertainty, adaptive expert systems, and pattern classification.

Rough Sets in Knowledge Discovery 2

Rough Sets in Knowledge Discovery 2 PDF Author: Lech Polkowski
Publisher: Boom Koninklijke Uitgevers
ISBN: 9783790811209
Category : Business & Economics
Languages : en
Pages : 616

Get Book Here

Book Description
The ideas and techniques worked out in Rough Set Theory allow for knowledge reduction and to finding near - to - functional dependencies in data. This fact determines the importance of these techniques for the rapidly growing field of knowledge discovery. Volume 1 and 2 will bring together articles covering the present state of the methods developed in this field of research. Among the topics covered we may mention: rough mereology and rough mereological approach to knowledge discovery in distributed systems; discretization and quantization of attributes; morphological aspects of rough set theory; analysis of default rules in the framework of rough set theory.

Rough – Granular Computing in Knowledge Discovery and Data Mining

Rough – Granular Computing in Knowledge Discovery and Data Mining PDF Author: J. Stepaniuk
Publisher: Springer
ISBN: 3540708014
Category : Computers
Languages : en
Pages : 162

Get Book Here

Book Description
This book covers methods based on a combination of granular computing, rough sets, and knowledge discovery in data mining (KDD). The discussion of KDD foundations based on the rough set approach and granular computing feature illustrative applications.

Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing

Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing PDF Author: Dominik Slezak
Publisher: Springer
ISBN: 3540318259
Category : Computers
Languages : en
Pages : 764

Get Book Here

Book Description
This volume contains the papers selected for presentation at the 10th Int- national Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, RSFDGrC 2005, organized at the University of Regina, August 31st–September 3rd, 2005. This conference followed in the footsteps of inter- tional events devoted to the subject of rough sets, held so far in Canada, China, Japan,Poland,Sweden, and the USA. RSFDGrC achievedthe status of biennial international conference, starting from 2003 in Chongqing, China. The theory of rough sets, proposed by Zdzis law Pawlak in 1982, is a model of approximate reasoning. The main idea is based on indiscernibility relations that describe indistinguishability of objects. Concepts are represented by - proximations. In applications, rough set methodology focuses on approximate representation of knowledge derivable from data. It leads to signi?cant results in many areas such as ?nance, industry, multimedia, and medicine. The RSFDGrC conferences put an emphasis on connections between rough sets and fuzzy sets, granularcomputing, and knowledge discoveryand data m- ing, both at the level of theoretical foundations and real-life applications. In the case of this event, additional e?ort was made to establish a linkage towards a broader range of applications. We achieved it by including in the conference program the workshops on bioinformatics, security engineering, and embedded systems, as well as tutorials and sessions related to other application areas.

Incomplete Information: Rough Set Analysis

Incomplete Information: Rough Set Analysis PDF Author: Ewa Orlowska
Publisher: Springer Science & Business Media
ISBN: 9783790810493
Category : Computers
Languages : en
Pages : 638

Get Book Here

Book Description
In 1982, Professor Pawlak published his seminal paper on what he called "rough sets" - a work which opened a new direction in the development of theories of incomplete information. Today, a decade and a half later, the theory of rough sets has evolved into a far-reaching methodology for dealing with a wide variety of issues centering on incompleteness and imprecision of information - issues which playa key role in the conception and design of intelligent information systems. "Incomplete Information: Rough Set Analysis" - or RSA for short - presents an up-to-date and highly authoritative account of the current status of the basic theory, its many extensions and wide-ranging applications. Edited by Professor Ewa Orlowska, one of the leading contributors to the theory of rough sets, RSA is a collection of nineteen well-integrated chapters authored by experts in rough set theory and related fields. A common thread that runs through these chapters ties the concept of incompleteness of information to those of indiscernibility and similarity.

Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing

Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing PDF Author: Guoyin Wang
Publisher: Springer Science & Business Media
ISBN: 3540140409
Category : Computers
Languages : en
Pages : 758

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, RSFDGrC 2003, held in Chongqing, China in May 2003. The 39 revised full papers and 75 revised short papers presented together with 2 invited keynote papers and 11 invited plenary papers were carefully reviewed and selected from a total of 245 submissions. The papers are organized in topical sections on rough sets foundations and methods; fuzzy sets and systems; granular computing; neural networks and evolutionary computing; data mining, machine learning, and pattern recognition; logics and reasoning; multi-agent systems; and Web intelligence and intelligent systems.

Transactions on Rough Sets II

Transactions on Rough Sets II PDF Author: James F. Peters
Publisher: Springer
ISBN: 3540277781
Category : Computers
Languages : en
Pages : 371

Get Book Here

Book Description
The LNCS journal Transactions on Rough Sets is devoted to the entire spectrum of rough sets related issues, starting from logical and mathematical foundations, through all aspects of rough set theory and its applications, such as data mining, knowledge discovery, and intelligent information processing, to relations between rough sets and other approaches to uncertainty, vagueness and incompleteness, such as fuzzy sets and theory of evidence. This second volume of the Transactions on Rough Sets presents 17 thoroughly reviewed revised papers devoted to rough set theory, fuzzy set theory; these papers highlight important aspects of these theories, their interrelation and application in various fields.

Rough Sets and Data Mining

Rough Sets and Data Mining PDF Author: T.Y. Lin
Publisher: Springer Science & Business Media
ISBN: 1461314615
Category : Computers
Languages : en
Pages : 429

Get Book Here

Book Description
Rough Sets and Data Mining: Analysis of Imprecise Data is an edited collection of research chapters on the most recent developments in rough set theory and data mining. The chapters in this work cover a range of topics that focus on discovering dependencies among data, and reasoning about vague, uncertain and imprecise information. The authors of these chapters have been careful to include fundamental research with explanations as well as coverage of rough set tools that can be used for mining data bases. The contributing authors consist of some of the leading scholars in the fields of rough sets, data mining, machine learning and other areas of artificial intelligence. Among the list of contributors are Z. Pawlak, J Grzymala-Busse, K. Slowinski, and others. Rough Sets and Data Mining: Analysis of Imprecise Data will be a useful reference work for rough set researchers, data base designers and developers, and for researchers new to the areas of data mining and rough sets.

Data Mining Methods for Knowledge Discovery

Data Mining Methods for Knowledge Discovery PDF Author: Krzysztof J. Cios
Publisher: Springer Science & Business Media
ISBN: 1461555892
Category : Computers
Languages : en
Pages : 508

Get Book Here

Book Description
Data Mining Methods for Knowledge Discovery provides an introduction to the data mining methods that are frequently used in the process of knowledge discovery. This book first elaborates on the fundamentals of each of the data mining methods: rough sets, Bayesian analysis, fuzzy sets, genetic algorithms, machine learning, neural networks, and preprocessing techniques. The book then goes on to thoroughly discuss these methods in the setting of the overall process of knowledge discovery. Numerous illustrative examples and experimental findings are also included. Each chapter comes with an extensive bibliography. Data Mining Methods for Knowledge Discovery is intended for senior undergraduate and graduate students, as well as a broad audience of professionals in computer and information sciences, medical informatics, and business information systems.

Rough Sets and Knowledge Technology

Rough Sets and Knowledge Technology PDF Author: Duoqian Miao
Publisher: Springer
ISBN: 3319117408
Category : Computers
Languages : en
Pages : 877

Get Book Here

Book Description
This book constitutes the thoroughly refereed conference proceedings of the 9th International Conference on Rough Sets and Knowledge Technology, RSKT 2014, held in Shanghai, China, in October 2014. The 70 papers presented were carefully reviewed and selected from 162 submissions. The papers in this volume cover topics such as foundations and generalizations of rough sets, attribute reduction and feature selection, applications of rough sets, intelligent systems and applications, knowledge technology, domain-oriented data-driven data mining, uncertainty in granular computing, advances in granular computing, big data to wise decisions, rough set theory, and three-way decisions, uncertainty, and granular computing.