Author: Lech Polkowski
Publisher: Physica
ISBN: 3790818402
Category : Computers
Languages : en
Pages : 679
Book Description
Rough set approach to reasoning under uncertainty is based on inducing knowledge representation from data under constraints expressed by discernibility or, more generally, similarity of objects. Knowledge derived by this approach consists of reducts, decision or association rules, dependencies, templates, or classifiers. This monograph presents the state of the art of this area. The reader will find here a deep theoretical discussion of relevant notions and ideas as well as rich inventory of algorithmic and heuristic tools for knowledge discovery by rough set methods. An extensive bibliography will help the reader to get an acquaintance with this rapidly growing area of research.
Rough Set Methods and Applications
Author: Lech Polkowski
Publisher: Physica
ISBN: 3790818402
Category : Computers
Languages : en
Pages : 679
Book Description
Rough set approach to reasoning under uncertainty is based on inducing knowledge representation from data under constraints expressed by discernibility or, more generally, similarity of objects. Knowledge derived by this approach consists of reducts, decision or association rules, dependencies, templates, or classifiers. This monograph presents the state of the art of this area. The reader will find here a deep theoretical discussion of relevant notions and ideas as well as rich inventory of algorithmic and heuristic tools for knowledge discovery by rough set methods. An extensive bibliography will help the reader to get an acquaintance with this rapidly growing area of research.
Publisher: Physica
ISBN: 3790818402
Category : Computers
Languages : en
Pages : 679
Book Description
Rough set approach to reasoning under uncertainty is based on inducing knowledge representation from data under constraints expressed by discernibility or, more generally, similarity of objects. Knowledge derived by this approach consists of reducts, decision or association rules, dependencies, templates, or classifiers. This monograph presents the state of the art of this area. The reader will find here a deep theoretical discussion of relevant notions and ideas as well as rich inventory of algorithmic and heuristic tools for knowledge discovery by rough set methods. An extensive bibliography will help the reader to get an acquaintance with this rapidly growing area of research.
Rough Set Theory and Granular Computing
Author: Masahiro Inuiguchi
Publisher: Springer
ISBN: 3540364730
Category : Technology & Engineering
Languages : en
Pages : 303
Book Description
After 20 years of pursuing rough set theory and its applications a look on its present state and further prospects is badly needed. The monograph Rough Set Theory and Granular Computing edited by Masahiro Inuiguchi, Shoji Hirano and Shusaku Tsumoto meets this demand. It presents the newest developments in this area and gives fair picture of the state of the art in this domain. Firstly, in the keynote papers by Zdzislaw Pawlak, Andrzej Skowron and Sankar K. Pal the relationship of rough sets with other important methods of data analysis -Bayes theorem, neuro computing and pattern recognitio- is thoroughly examined. Next, several interesting generalizations of the the ory and new directions of research are presented. Furthermore application of rough sets in data mining, in particular, rule induction methods based on rough set theory is presented and discussed. Further important issue dis cussed in the monograph is rough set based data analysis, including study of decisions making in conflict situations. Last but not least, some recent engi neering applications of rough set theory are given. They include a proposal of rough set processor architecture organization for fast implementation of ba sic rough set operations and discussion of results concerning advanced image processing for unmanned aerial vehicle. Thus the monograph beside presenting wide spectrum of ongoing research in this area also points out new emerging areas of study and applications, which makes it a valuable source of information to all interested in this do main.
Publisher: Springer
ISBN: 3540364730
Category : Technology & Engineering
Languages : en
Pages : 303
Book Description
After 20 years of pursuing rough set theory and its applications a look on its present state and further prospects is badly needed. The monograph Rough Set Theory and Granular Computing edited by Masahiro Inuiguchi, Shoji Hirano and Shusaku Tsumoto meets this demand. It presents the newest developments in this area and gives fair picture of the state of the art in this domain. Firstly, in the keynote papers by Zdzislaw Pawlak, Andrzej Skowron and Sankar K. Pal the relationship of rough sets with other important methods of data analysis -Bayes theorem, neuro computing and pattern recognitio- is thoroughly examined. Next, several interesting generalizations of the the ory and new directions of research are presented. Furthermore application of rough sets in data mining, in particular, rule induction methods based on rough set theory is presented and discussed. Further important issue dis cussed in the monograph is rough set based data analysis, including study of decisions making in conflict situations. Last but not least, some recent engi neering applications of rough set theory are given. They include a proposal of rough set processor architecture organization for fast implementation of ba sic rough set operations and discussion of results concerning advanced image processing for unmanned aerial vehicle. Thus the monograph beside presenting wide spectrum of ongoing research in this area also points out new emerging areas of study and applications, which makes it a valuable source of information to all interested in this do main.
Incomplete Information: Rough Set Analysis
Author: Ewa Orlowska
Publisher: Springer Science & Business Media
ISBN: 9783790810493
Category : Computers
Languages : en
Pages : 638
Book Description
In 1982, Professor Pawlak published his seminal paper on what he called "rough sets" - a work which opened a new direction in the development of theories of incomplete information. Today, a decade and a half later, the theory of rough sets has evolved into a far-reaching methodology for dealing with a wide variety of issues centering on incompleteness and imprecision of information - issues which playa key role in the conception and design of intelligent information systems. "Incomplete Information: Rough Set Analysis" - or RSA for short - presents an up-to-date and highly authoritative account of the current status of the basic theory, its many extensions and wide-ranging applications. Edited by Professor Ewa Orlowska, one of the leading contributors to the theory of rough sets, RSA is a collection of nineteen well-integrated chapters authored by experts in rough set theory and related fields. A common thread that runs through these chapters ties the concept of incompleteness of information to those of indiscernibility and similarity.
Publisher: Springer Science & Business Media
ISBN: 9783790810493
Category : Computers
Languages : en
Pages : 638
Book Description
In 1982, Professor Pawlak published his seminal paper on what he called "rough sets" - a work which opened a new direction in the development of theories of incomplete information. Today, a decade and a half later, the theory of rough sets has evolved into a far-reaching methodology for dealing with a wide variety of issues centering on incompleteness and imprecision of information - issues which playa key role in the conception and design of intelligent information systems. "Incomplete Information: Rough Set Analysis" - or RSA for short - presents an up-to-date and highly authoritative account of the current status of the basic theory, its many extensions and wide-ranging applications. Edited by Professor Ewa Orlowska, one of the leading contributors to the theory of rough sets, RSA is a collection of nineteen well-integrated chapters authored by experts in rough set theory and related fields. A common thread that runs through these chapters ties the concept of incompleteness of information to those of indiscernibility and similarity.
Rough Sets in Knowledge Discovery 2
Author: Lech Polkowski
Publisher: Boom Koninklijke Uitgevers
ISBN: 9783790811209
Category : Business & Economics
Languages : en
Pages : 616
Book Description
The ideas and techniques worked out in Rough Set Theory allow for knowledge reduction and to finding near - to - functional dependencies in data. This fact determines the importance of these techniques for the rapidly growing field of knowledge discovery. Volume 1 and 2 will bring together articles covering the present state of the methods developed in this field of research. Among the topics covered we may mention: rough mereology and rough mereological approach to knowledge discovery in distributed systems; discretization and quantization of attributes; morphological aspects of rough set theory; analysis of default rules in the framework of rough set theory.
Publisher: Boom Koninklijke Uitgevers
ISBN: 9783790811209
Category : Business & Economics
Languages : en
Pages : 616
Book Description
The ideas and techniques worked out in Rough Set Theory allow for knowledge reduction and to finding near - to - functional dependencies in data. This fact determines the importance of these techniques for the rapidly growing field of knowledge discovery. Volume 1 and 2 will bring together articles covering the present state of the methods developed in this field of research. Among the topics covered we may mention: rough mereology and rough mereological approach to knowledge discovery in distributed systems; discretization and quantization of attributes; morphological aspects of rough set theory; analysis of default rules in the framework of rough set theory.
Rough Sets
Author: Lech Polkowski
Publisher: Springer Science & Business Media
ISBN: 3790817767
Category : Mathematics
Languages : en
Pages : 549
Book Description
A comprehensive introduction to mathematical structures essential for Rough Set Theory. The book enables the reader to systematically study all topics of rough set theory. After a detailed introduction in Part 1 along with an extensive bibliography of current research papers. Part 2 presents a self-contained study that brings together all the relevant information from respective areas of mathematics and logics. Part 3 provides an overall picture of theoretical developments in rough set theory, covering logical, algebraic, and topological methods. Topics covered include: algebraic theory of approximation spaces, logical and set-theoretical approaches to indiscernibility and functional dependence, topological spaces of rough sets. The final part gives a unique view on mutual relations between fuzzy and rough set theories (rough fuzzy and fuzzy rough sets). Over 300 excercises allow the reader to master the topics considered. The book can be used as a textbook and as a reference work.
Publisher: Springer Science & Business Media
ISBN: 3790817767
Category : Mathematics
Languages : en
Pages : 549
Book Description
A comprehensive introduction to mathematical structures essential for Rough Set Theory. The book enables the reader to systematically study all topics of rough set theory. After a detailed introduction in Part 1 along with an extensive bibliography of current research papers. Part 2 presents a self-contained study that brings together all the relevant information from respective areas of mathematics and logics. Part 3 provides an overall picture of theoretical developments in rough set theory, covering logical, algebraic, and topological methods. Topics covered include: algebraic theory of approximation spaces, logical and set-theoretical approaches to indiscernibility and functional dependence, topological spaces of rough sets. The final part gives a unique view on mutual relations between fuzzy and rough set theories (rough fuzzy and fuzzy rough sets). Over 300 excercises allow the reader to master the topics considered. The book can be used as a textbook and as a reference work.
Uncertainty Management with Fuzzy and Rough Sets
Author: Rafael Bello
Publisher: Springer
ISBN: 303010463X
Category : Technology & Engineering
Languages : en
Pages : 424
Book Description
This book offers a timely overview of fuzzy and rough set theories and methods. Based on selected contributions presented at the International Symposium on Fuzzy and Rough Sets, ISFUROS 2017, held in Varadero, Cuba, on October 24-26, 2017, the book also covers related approaches, such as hybrid rough-fuzzy sets and hybrid fuzzy-rough sets and granular computing, as well as a number of applications, from big data analytics, to business intelligence, security, robotics, logistics, wireless sensor networks and many more. It is intended as a source of inspiration for PhD students and researchers in the field, fostering not only new ideas but also collaboration between young researchers and institutions and established ones.
Publisher: Springer
ISBN: 303010463X
Category : Technology & Engineering
Languages : en
Pages : 424
Book Description
This book offers a timely overview of fuzzy and rough set theories and methods. Based on selected contributions presented at the International Symposium on Fuzzy and Rough Sets, ISFUROS 2017, held in Varadero, Cuba, on October 24-26, 2017, the book also covers related approaches, such as hybrid rough-fuzzy sets and hybrid fuzzy-rough sets and granular computing, as well as a number of applications, from big data analytics, to business intelligence, security, robotics, logistics, wireless sensor networks and many more. It is intended as a source of inspiration for PhD students and researchers in the field, fostering not only new ideas but also collaboration between young researchers and institutions and established ones.
Rough Sets
Author: Z. Pawlak
Publisher: Springer Science & Business Media
ISBN: 9401135347
Category : Computers
Languages : en
Pages : 247
Book Description
To-date computers are supposed to store and exploit knowledge. At least that is one of the aims of research fields such as Artificial Intelligence and Information Systems. However, the problem is to understand what knowledge means, to find ways of representing knowledge, and to specify automated machineries that can extract useful information from stored knowledge. Knowledge is something people have in their mind, and which they can express through natural language. Knowl edge is acquired not only from books, but also from observations made during experiments; in other words, from data. Changing data into knowledge is not a straightforward task. A set of data is generally disorganized, contains useless details, although it can be incomplete. Knowledge is just the opposite: organized (e.g. laying bare dependencies, or classifications), but expressed by means of a poorer language, i.e. pervaded by imprecision or even vagueness, and assuming a level of granularity. One may say that knowledge is summarized and organized data - at least the kind of knowledge that computers can store.
Publisher: Springer Science & Business Media
ISBN: 9401135347
Category : Computers
Languages : en
Pages : 247
Book Description
To-date computers are supposed to store and exploit knowledge. At least that is one of the aims of research fields such as Artificial Intelligence and Information Systems. However, the problem is to understand what knowledge means, to find ways of representing knowledge, and to specify automated machineries that can extract useful information from stored knowledge. Knowledge is something people have in their mind, and which they can express through natural language. Knowl edge is acquired not only from books, but also from observations made during experiments; in other words, from data. Changing data into knowledge is not a straightforward task. A set of data is generally disorganized, contains useless details, although it can be incomplete. Knowledge is just the opposite: organized (e.g. laying bare dependencies, or classifications), but expressed by means of a poorer language, i.e. pervaded by imprecision or even vagueness, and assuming a level of granularity. One may say that knowledge is summarized and organized data - at least the kind of knowledge that computers can store.
Transactions on Rough Sets II
Author: James F. Peters
Publisher: Springer
ISBN: 3540277781
Category : Computers
Languages : en
Pages : 371
Book Description
The LNCS journal Transactions on Rough Sets is devoted to the entire spectrum of rough sets related issues, starting from logical and mathematical foundations, through all aspects of rough set theory and its applications, such as data mining, knowledge discovery, and intelligent information processing, to relations between rough sets and other approaches to uncertainty, vagueness and incompleteness, such as fuzzy sets and theory of evidence. This second volume of the Transactions on Rough Sets presents 17 thoroughly reviewed revised papers devoted to rough set theory, fuzzy set theory; these papers highlight important aspects of these theories, their interrelation and application in various fields.
Publisher: Springer
ISBN: 3540277781
Category : Computers
Languages : en
Pages : 371
Book Description
The LNCS journal Transactions on Rough Sets is devoted to the entire spectrum of rough sets related issues, starting from logical and mathematical foundations, through all aspects of rough set theory and its applications, such as data mining, knowledge discovery, and intelligent information processing, to relations between rough sets and other approaches to uncertainty, vagueness and incompleteness, such as fuzzy sets and theory of evidence. This second volume of the Transactions on Rough Sets presents 17 thoroughly reviewed revised papers devoted to rough set theory, fuzzy set theory; these papers highlight important aspects of these theories, their interrelation and application in various fields.
Rough Sets and Current Trends in Computing
Author: James J. Alpigini
Publisher: Springer Science & Business Media
ISBN: 354044274X
Category : Computers
Languages : en
Pages : 654
Book Description
This book constitutes the refereed proceedings of the Third International Conference on Rough Sets and Current Trends in Computing, RSCTC 2002, held in Malvern, PA, USA in October 2002. The 76 revised regular papers and short communications presented together with 2 keynotes and 5 plenary papers were carefully reviewed and selected from more than 100 submissions. The book offers topical sections on foundation and methods; granular and neural computing; probabilistic reasoning; data mining, machine learning and pattern recognition; Web mining; and applications.
Publisher: Springer Science & Business Media
ISBN: 354044274X
Category : Computers
Languages : en
Pages : 654
Book Description
This book constitutes the refereed proceedings of the Third International Conference on Rough Sets and Current Trends in Computing, RSCTC 2002, held in Malvern, PA, USA in October 2002. The 76 revised regular papers and short communications presented together with 2 keynotes and 5 plenary papers were carefully reviewed and selected from more than 100 submissions. The book offers topical sections on foundation and methods; granular and neural computing; probabilistic reasoning; data mining, machine learning and pattern recognition; Web mining; and applications.
Rough Sets, Fuzzy Sets and Knowledge Discovery
Author: Wojciech P. Ziarko
Publisher: Springer Science & Business Media
ISBN: 1447132386
Category : Computers
Languages : en
Pages : 486
Book Description
The objective of this book is two-fold. Firstly, it is aimed at bringing to gether key research articles concerned with methodologies for knowledge discovery in databases and their applications. Secondly, it also contains articles discussing fundamentals of rough sets and their relationship to fuzzy sets, machine learning, management of uncertainty and systems of logic for formal reasoning about knowledge. Applications of rough sets in different areas such as medicine, logic design, image processing and expert systems are also represented. The articles included in the book are based on selected papers presented at the International Workshop on Rough Sets and Knowledge Discovery held in Banff, Canada in 1993. The primary methodological approach emphasized in the book is the mathematical theory of rough sets, a relatively new branch of mathematics concerned with the modeling and analysis of classification problems with imprecise, uncertain, or incomplete information. The methods of the theory of rough sets have applications in many sub-areas of artificial intelligence including knowledge discovery, machine learning, formal reasoning in the presence of uncertainty, knowledge acquisition, and others. This spectrum of applications is reflected in this book where articles, although centered around knowledge discovery problems, touch a number of related issues. The book is intended to provide an important reference material for students, researchers, and developers working in the areas of knowledge discovery, machine learning, reasoning with uncertainty, adaptive expert systems, and pattern classification.
Publisher: Springer Science & Business Media
ISBN: 1447132386
Category : Computers
Languages : en
Pages : 486
Book Description
The objective of this book is two-fold. Firstly, it is aimed at bringing to gether key research articles concerned with methodologies for knowledge discovery in databases and their applications. Secondly, it also contains articles discussing fundamentals of rough sets and their relationship to fuzzy sets, machine learning, management of uncertainty and systems of logic for formal reasoning about knowledge. Applications of rough sets in different areas such as medicine, logic design, image processing and expert systems are also represented. The articles included in the book are based on selected papers presented at the International Workshop on Rough Sets and Knowledge Discovery held in Banff, Canada in 1993. The primary methodological approach emphasized in the book is the mathematical theory of rough sets, a relatively new branch of mathematics concerned with the modeling and analysis of classification problems with imprecise, uncertain, or incomplete information. The methods of the theory of rough sets have applications in many sub-areas of artificial intelligence including knowledge discovery, machine learning, formal reasoning in the presence of uncertainty, knowledge acquisition, and others. This spectrum of applications is reflected in this book where articles, although centered around knowledge discovery problems, touch a number of related issues. The book is intended to provide an important reference material for students, researchers, and developers working in the areas of knowledge discovery, machine learning, reasoning with uncertainty, adaptive expert systems, and pattern classification.