Roles and Challenges of Semantic Intelligence in Healthcare Cognitive Computing

Roles and Challenges of Semantic Intelligence in Healthcare Cognitive Computing PDF Author: A. Carbonaro
Publisher: IOS Press
ISBN: 1643684612
Category : Computers
Languages : en
Pages : 178

Get Book Here

Book Description
The data that must be processed in healthcare includes text, numbers, statistics, and images, and healthcare systems are continuously acquiring novel data from cutting-edge technologies like wearable devices. Semantic intelligence technologies, such as artificial intelligence, machine learning, and the internet of things, together with the hybrid methodologies which combine these approaches, are central to the development of the intelligent, knowledge-based systems now used in healthcare. This book, Roles and Challenges of Semantic Intelligence in Healthcare Cognitive Computing explores those emerging fields of science and technology in which cognitive computing techniques offer the effective solutions poised to impact healthcare in the foreseeable future, minimizing errors and improving the effectiveness of personalized care models. The book assesses the current landscape, and identifies the roles and challenges of integrating cognitive computing techniques into the widespread adoption of innovative smart healthcare solutions. Each chapter is the result of collaboration by experts from various domains, and provides a detailed overview of the potential offered by new technologies in the field. A wide spectrum of topics and emerging trends are covered, reflecting the multidisciplinary nature of healthcare and cognitive computing and including digital twins, eXplainable AI, AI-based decision-support systems in intensive care, and culinary healthcare, as well as the semantic internet of things (SIoT), natural language processing, and deep learning and graph models. The book presents new ideas which will facilitate collaboration among the different disciplines involved, and will be of interest to all those working in this rapidly evolving field.

Roles and Challenges of Semantic Intelligence in Healthcare Cognitive Computing

Roles and Challenges of Semantic Intelligence in Healthcare Cognitive Computing PDF Author: A. Carbonaro
Publisher: IOS Press
ISBN: 1643684612
Category : Computers
Languages : en
Pages : 178

Get Book Here

Book Description
The data that must be processed in healthcare includes text, numbers, statistics, and images, and healthcare systems are continuously acquiring novel data from cutting-edge technologies like wearable devices. Semantic intelligence technologies, such as artificial intelligence, machine learning, and the internet of things, together with the hybrid methodologies which combine these approaches, are central to the development of the intelligent, knowledge-based systems now used in healthcare. This book, Roles and Challenges of Semantic Intelligence in Healthcare Cognitive Computing explores those emerging fields of science and technology in which cognitive computing techniques offer the effective solutions poised to impact healthcare in the foreseeable future, minimizing errors and improving the effectiveness of personalized care models. The book assesses the current landscape, and identifies the roles and challenges of integrating cognitive computing techniques into the widespread adoption of innovative smart healthcare solutions. Each chapter is the result of collaboration by experts from various domains, and provides a detailed overview of the potential offered by new technologies in the field. A wide spectrum of topics and emerging trends are covered, reflecting the multidisciplinary nature of healthcare and cognitive computing and including digital twins, eXplainable AI, AI-based decision-support systems in intensive care, and culinary healthcare, as well as the semantic internet of things (SIoT), natural language processing, and deep learning and graph models. The book presents new ideas which will facilitate collaboration among the different disciplines involved, and will be of interest to all those working in this rapidly evolving field.

Reasoning Techniques for the Web of Data

Reasoning Techniques for the Web of Data PDF Author: A. Hogan
Publisher: IOS Press
ISBN: 1614993831
Category : Computers
Languages : en
Pages : 344

Get Book Here

Book Description
Linked Data publishing has brought about a novel “Web of Data”: a wealth of diverse, interlinked, structured data published on the Web. These Linked Datasets are described using the Semantic Web standards and are openly available to all, produced by governments, businesses, communities and academia alike. However, the heterogeneity of such data – in terms of how resources are described and identified – poses major challenges to potential consumers. Herein, we examine use cases for pragmatic, lightweight reasoning techniques that leverage Web vocabularies (described in RDFS and OWL) to better integrate large scale, diverse, Linked Data corpora. We take a test corpus of 1.1 billion RDF statements collected from 4 million RDF Web documents and analyse the use of RDFS and OWL therein. We then detail and evaluate scalable and distributed techniques for applying rule-based materialisation to translate data between different vocabularies, and to resolve coreferent resources that talk about the same thing. We show how such techniques can be made robust in the face of noisy and often impudent Web data. We also examine a use case for incorporating a PagerRank-style algorithm to rank the trustworthiness of facts produced by reasoning, subsequently using those ranks to fix formal contradictions in the data. All of our methods are validated against our real world, large scale, open domain, Linked Data evaluation corpus.

Empirical Ontology Design Patterns

Empirical Ontology Design Patterns PDF Author: V.A. Carriero
Publisher: IOS Press
ISBN: 1643684795
Category : Computers
Languages : en
Pages : 154

Get Book Here

Book Description
In recent years, knowledge graphs (KGs) and ontologies have been widely adopted for modeling many kinds of domain. They are frequently released openly, something which benefits those who are starting new projects, because it offers them a wide choice of ontology reuse and the possibility to link to existing data. Understanding the content of an ontology or a knowledge graph is far from straightforward, however, and existing methods address this issue only partially, while exploring and comparing multiple ontologies can be a tedious manual task. This book, Empirical Ontology Design Patterns, starts from the premise that identifying the Ontology Design Patterns (ODPs) used in an ontology or a knowledge graph will go some way to addressing this problem. Its main focus is to provide tools which will effectively support the task of automatically identifying ODPs in existing ontologies and knowledge graphs. The book analyses the role of ODPs in ontology engineering, placing this analysis in the wider context of existing approaches to ontology reuse and implementation. It introduces a novel method for extracting empirical ontology design patterns (EODPs) from ontologies, and another for extracting EODPs from knowledge graphs whose schemas are implicit. Both methods are applied to ontologies and knowledge graphs frequently adopted and reused, such as Wikidata. The book also offers an ontology which can be used as a basis for annotating ODPs in ontologies and knowledge graphs, whether manually or automatically. The book will be of interest to all those whose work involves the use or reuse of ontologies and knowledge graphs.

Perspectives on Ontology Learning

Perspectives on Ontology Learning PDF Author: J. Lehmann
Publisher: IOS Press
ISBN: 1614993793
Category : Computers
Languages : en
Pages : 299

Get Book Here

Book Description
Perspectives on Ontology Learning brings together researchers and practitioners from different communities − natural language processing, machine learning, and the semantic web − in order to give an interdisciplinary overview of recent advances in ontology learning. Starting with a comprehensive introduction to the theoretical foundations of ontology learning methods, the edited volume presents the state-of-the-start in automated knowledge acquisition and maintenance. It outlines future challenges in this area with a special focus on technologies suitable for pushing the boundaries beyond the creation of simple taxonomical structures, as well as on problems specifically related to knowledge modeling and representation using the Web Ontology Language. Perspectives on Ontology Learning is designed for researchers in the field of semantic technologies and developers of knowledge-based applications. It covers various aspects of ontology learning including ontology quality, user interaction, scalability, knowledge acquisition from heterogeneous sources, as well as the integration with ontology engineering methodologies.

Semantic Search for Novel Information

Semantic Search for Novel Information PDF Author: M. Färber
Publisher: IOS Press
ISBN: 1614997756
Category : Computers
Languages : en
Pages : 214

Get Book Here

Book Description
In this book, new approaches are presented for detecting and extracting simultaneously relevant and novel information from unstructured text documents. A major contribution of these approaches is that the information already provided and the extracted information are modeled semantically. This leads to the following benefits: (a) ambiguities in the language can be resolved; (b) the exact information needs regarding relevance and novelty can be specified; and (c) knowledge graphs can be incorporated. More specifically, this book presents the following scientific contributions: 1. An assessment of the suitability of existing large knowledge graphs (namely, DBpedia, Freebase, OpenCyc, Wikidata, and YAGO) for the task of detecting novel information in text documents. 2. A description of an approach by which emerging entities that are missing in a knowledge graph are detected in a stream of text documents. 3. A suggestion for an approach to extracting novel, relevant, semantically-structured statements from text documents. The developed approaches are suitable for the recommendation of emerging entities and novel statements respectively, for the purpose of knowledge graph population, and for providing assistance to users requiring novel information, such as journalists and technology scouts.

Exploiting Semantic Web Knowledge Graphs in Data Mining

Exploiting Semantic Web Knowledge Graphs in Data Mining PDF Author: P. Ristoski
Publisher: IOS Press
ISBN: 1614999813
Category : Computers
Languages : en
Pages : 246

Get Book Here

Book Description
Data Mining and Knowledge Discovery in Databases (KDD) is a research field concerned with deriving higher-level insights from data. The tasks performed in this field are knowledge intensive and can benefit from additional knowledge from various sources, so many approaches have been proposed that combine Semantic Web data with the data mining and knowledge discovery process. This book, Exploiting Semantic Web Knowledge Graphs in Data Mining, aims to show that Semantic Web knowledge graphs are useful for generating valuable data mining features that can be used in various data mining tasks. In Part I, Mining Semantic Web Knowledge Graphs, the author evaluates unsupervised feature generation strategies from types and relations in knowledge graphs used in different data mining tasks such as classification, regression, and outlier detection. Part II, Semantic Web Knowledge Graphs Embeddings, proposes an approach that circumvents the shortcomings introduced with the approaches in Part I, developing an approach that is able to embed complete Semantic Web knowledge graphs in a low dimensional feature space where each entity and relation in the knowledge graph is represented as a numerical vector. Finally, Part III, Applications of Semantic Web Knowledge Graphs, describes a list of applications that exploit Semantic Web knowledge graphs like classification and regression, showing that the approaches developed in Part I and Part II can be used in applications in various domains. The book will be of interest to all those working in the field of data mining and KDD.

Advances in Ontology Design and Patterns

Advances in Ontology Design and Patterns PDF Author: K. Hammar
Publisher: IOS Press
ISBN: 1614998264
Category : Computers
Languages : en
Pages : 162

Get Book Here

Book Description
The study of patterns in the context of ontology engineering for the semantic web was pioneered more than a decade ago by Blomqvist, Sandkuhl and Gangemi. Since then, this line of research has flourished and led to the development of ontology design patterns, knowledge patterns, and linked data patterns: the patterns as they are known by ontology designers, knowledge engineers, and linked data publishers, respectively. A key characteristic of those patterns is that they are modular and reusable solutions to recurrent problems in ontology engineering and linked data publishing. This book contains recent contributions which advance the state of the art on theory and use of ontology design patterns. The papers collected in this book cover a range of topics, from a method to instantiate content patterns, a proposal on how to document a content pattern, to a number of patterns emerging in ontology modeling in various situations.

AI in the Social and Business World: A Comprehensive Approach

AI in the Social and Business World: A Comprehensive Approach PDF Author: Parul Dubey
Publisher: Bentham Science Publishers
ISBN: 9815256874
Category : Computers
Languages : en
Pages : 325

Get Book Here

Book Description
AI in the Social and Business World: A Comprehensive Approach offers an in-depth exploration of the transformative impact of Artificial Intelligence (AI) across a wide range of sectors. This edited collection features 13 chapters, each penned by field experts, providing a comprehensive understanding of AI's theoretical foundations, practical applications, and societal implications. Each chapter offers strategic insights, case studies, and discussions on ethical considerations and future trends. Beginning with an overview of AI's historical evolution, the book navigates through its diverse applications in healthcare, social welfare, business intelligence, and more. Chapters systematically explore AI's role in enhancing healthcare delivery, optimizing business operations, and fostering social inclusion through innovative technologies like AI-based sign recognition and IoT in agriculture. With strategic insights, case studies, and discussions on ethical considerations and future trends, this book is a valuable resource for researchers, practitioners, and anyone interested in understanding AI's multifaceted influence. It is designed to foster informed discussions and strategic decisions in navigating the evolving landscape of AI in today's dynamic world. This book is an essential resource for researchers, practitioners, and anyone interested in understanding AI’s multifaceted influence across the social and business landscapes.

Reconnoitering the Landscape of Edge Intelligence in Healthcare

Reconnoitering the Landscape of Edge Intelligence in Healthcare PDF Author: Suneeta Satpathy
Publisher: CRC Press
ISBN: 1000894932
Category : Computers
Languages : en
Pages : 292

Get Book Here

Book Description
The revolution in healthcare as well as demand for efficient real-time healthcare services are driving the progression of edge computing, AI-mediated techniques, deep learning, and IoT applications for healthcare industries and cloud computing. Edge computing helps to meet the demand for newer and more sophisticated healthcare systems that are more personalized and that match the speed of modern life. With applications of edge computing, automated intelligence and intuitions are incorporated into existing healthcare analysis tools for identifying, forecasting, and preventing high-risk diseases. Reconnoitering the Landscape of Edge Intelligence in Healthcare provides comprehensive research on edge intelligence technology with the emphasis on application in the healthcare industry. It covers all the various areas of edge intelligence for data analysis in healthcare, looking at the emerging technologies such as AI-based techniques, machine learning, IoT, cloud computing, and deep learning with illustrations of the design, implementation, and management of smart and intelligent healthcare systems. Chapters showcase the advantages and highlights of the adoption of the intelligent edge models toward smart healthcare infrastructure. The book also addresses the increased need for a high level of medical data security while transferring real-time data to cloud-based architecture, a matter of prime concern for both patient and doctor. Topics include edge intelligence for wearable sensor technologies and their applications for health monitoring, the various edge computing techniques for disease prediction, e-health services and e-security solutions through IoT devices that aim to improve the quality of care for transgender patients, smart technology in ambient assisted living, the role of edge intelligence in limiting virus spread during pandemics, neuroscience in decoding and analysis of visual perception from the neural patterns and visual image reconstruction, and more. The technology addressed include energy aware cross-layer routing protocol (ECRP), OMKELM-IDS technique, graphical user interface (GUI), IOST (an ultra-fast, decentralized blockchain platform), etc. This volume will be helpful to engineering students, research scholars, and manufacturing industry professionals in the fields of engineering applications initiatives on AI, machine learning, and deep learning techniques for edge computing.

Integrating Relational Databases with the Semantic Web

Integrating Relational Databases with the Semantic Web PDF Author: Juan Federico Sequeda
Publisher:
ISBN: 9781614996286
Category : Relational databases
Languages : en
Pages : 0

Get Book Here

Book Description
An early vision in Computer Science was to create intelligent systems capable of reasoning on large amounts of data. Independent results in the areas of Semantic Web and Relational Databases have advanced us towards this vision. Despite independent advances, the interface between Relational Databases and Semantic Web is poorly understood. This dissertation revisits this early vision with respect to current technology and addresses the following question: How and to what extent can Relational Databases be integrated with the Semantic Web? The thesis is that much of the existing Relational Database infrastructure can be reused to support the Semantic Web. Two problems are studied.Can a Relational Database be automatically virtualized as a Semantic Web data source? The first contribution is an automatic direct mapping from a Relational Database schema and data to RDF and OWL. The second contribution is a method capable of evaluating SPARQL queries against the Relational Database by exploiting two existing relational query optimizations. These contributions are embodied in the Ultrawrap system. Experiments show that SPARQL query execution performance on Ultrawrap is comparable to that of SQL queries written directly for the relational data. Such results have not been previously achieved.Can a Relational Database be mapped to existing Semantic Web ontologies and act as a reasoner? A third contribution is a method for Relational Databases to support inheritance and transitivity by compiling the ontology as mappings, implementing the mappings as views, using SQL recursion and optimizing by materializing views. Ultrawrap is extended with this contribution. Empirical analysis reveals that Relational Databases are able to effectively act as reasoners.