Author: Michael N. Fardis
Publisher: Springer Science & Business Media
ISBN: 9400719779
Category : Technology & Engineering
Languages : en
Pages : 392
Book Description
Nowadays research in earthquake engineering is mainly experimental and in large-scale; advanced computations are integrated with large-scale experiments, to complement them and extend their scope, even by coupling two different but simultaneous tests. Earthquake engineering cannot give answers by testing and qualifying few, small typical components or single large prototypes. Besides, the large diversity of Civil Engineering structures does not allow drawing conclusions from only a few tests; structures are large and their seismic response and performance cannot be meaningfully tested in an ordinary lab or in the field. So, seismic testing facilities should be much larger than in other scientific fields; their staff has to be resourceful, devising intelligent ways to carry out simultaneously different tests and advanced computations. To better serve such a mission European testing facilities and researchers in earthquake engineering have shared their resources and activities in the framework of the European project SERIES, combining their research and jointly developing advanced testing and instrumentation techniques that maximize testing capabilities and increase the value of the tests. This volume presents the first outcomes of the SERIES and its contribution towards Performance-based Earthquake Engineering, i.e., to the most important development in Earthquake Engineering of the past three decades. The concept and the methodologies for performance-based earthquake engineering have now matured. However, they are based mainly on analytical/numerical research; large-scale seismic testing has entered the stage recently. The SERIES Workshop in Ohrid (MK) in Sept. 2010 pooled together the largest European seismic testing facilities, Europe’s best experts in experimental earthquake engineering and select experts from the USA, to present recent research achievements and to address future developments. Audience: This volume will be of interest to researchers and advanced practitioners in structural earthquake engineering, geotechnical earthquake engineering, engineering seismology, and experimental dynamics, including seismic qualification.
Role of Seismic Testing Facilities in Performance-Based Earthquake Engineering
Author: Michael N. Fardis
Publisher: Springer Science & Business Media
ISBN: 9400719779
Category : Technology & Engineering
Languages : en
Pages : 392
Book Description
Nowadays research in earthquake engineering is mainly experimental and in large-scale; advanced computations are integrated with large-scale experiments, to complement them and extend their scope, even by coupling two different but simultaneous tests. Earthquake engineering cannot give answers by testing and qualifying few, small typical components or single large prototypes. Besides, the large diversity of Civil Engineering structures does not allow drawing conclusions from only a few tests; structures are large and their seismic response and performance cannot be meaningfully tested in an ordinary lab or in the field. So, seismic testing facilities should be much larger than in other scientific fields; their staff has to be resourceful, devising intelligent ways to carry out simultaneously different tests and advanced computations. To better serve such a mission European testing facilities and researchers in earthquake engineering have shared their resources and activities in the framework of the European project SERIES, combining their research and jointly developing advanced testing and instrumentation techniques that maximize testing capabilities and increase the value of the tests. This volume presents the first outcomes of the SERIES and its contribution towards Performance-based Earthquake Engineering, i.e., to the most important development in Earthquake Engineering of the past three decades. The concept and the methodologies for performance-based earthquake engineering have now matured. However, they are based mainly on analytical/numerical research; large-scale seismic testing has entered the stage recently. The SERIES Workshop in Ohrid (MK) in Sept. 2010 pooled together the largest European seismic testing facilities, Europe’s best experts in experimental earthquake engineering and select experts from the USA, to present recent research achievements and to address future developments. Audience: This volume will be of interest to researchers and advanced practitioners in structural earthquake engineering, geotechnical earthquake engineering, engineering seismology, and experimental dynamics, including seismic qualification.
Publisher: Springer Science & Business Media
ISBN: 9400719779
Category : Technology & Engineering
Languages : en
Pages : 392
Book Description
Nowadays research in earthquake engineering is mainly experimental and in large-scale; advanced computations are integrated with large-scale experiments, to complement them and extend their scope, even by coupling two different but simultaneous tests. Earthquake engineering cannot give answers by testing and qualifying few, small typical components or single large prototypes. Besides, the large diversity of Civil Engineering structures does not allow drawing conclusions from only a few tests; structures are large and their seismic response and performance cannot be meaningfully tested in an ordinary lab or in the field. So, seismic testing facilities should be much larger than in other scientific fields; their staff has to be resourceful, devising intelligent ways to carry out simultaneously different tests and advanced computations. To better serve such a mission European testing facilities and researchers in earthquake engineering have shared their resources and activities in the framework of the European project SERIES, combining their research and jointly developing advanced testing and instrumentation techniques that maximize testing capabilities and increase the value of the tests. This volume presents the first outcomes of the SERIES and its contribution towards Performance-based Earthquake Engineering, i.e., to the most important development in Earthquake Engineering of the past three decades. The concept and the methodologies for performance-based earthquake engineering have now matured. However, they are based mainly on analytical/numerical research; large-scale seismic testing has entered the stage recently. The SERIES Workshop in Ohrid (MK) in Sept. 2010 pooled together the largest European seismic testing facilities, Europe’s best experts in experimental earthquake engineering and select experts from the USA, to present recent research achievements and to address future developments. Audience: This volume will be of interest to researchers and advanced practitioners in structural earthquake engineering, geotechnical earthquake engineering, engineering seismology, and experimental dynamics, including seismic qualification.
Improved Seismic Monitoring - Improved Decision-Making
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309165032
Category : Science
Languages : en
Pages : 196
Book Description
Improved Seismic Monitoringâ€"Improved Decision-Making, describes and assesses the varied economic benefits potentially derived from modernizing and expanding seismic monitoring activities in the United States. These benefits include more effective loss avoidance regulations and strategies, improved understanding of earthquake processes, better engineering design, more effective hazard mitigation strategies, and improved emergency response and recovery. The economic principles that must be applied to determine potential benefits are reviewed and the report concludes that although there is insufficient information available at present to fully quantify all the potential benefits, the annual dollar costs for improved seismic monitoring are in the tens of millions and the potential annual dollar benefits are in the hundreds of millions.
Publisher: National Academies Press
ISBN: 0309165032
Category : Science
Languages : en
Pages : 196
Book Description
Improved Seismic Monitoringâ€"Improved Decision-Making, describes and assesses the varied economic benefits potentially derived from modernizing and expanding seismic monitoring activities in the United States. These benefits include more effective loss avoidance regulations and strategies, improved understanding of earthquake processes, better engineering design, more effective hazard mitigation strategies, and improved emergency response and recovery. The economic principles that must be applied to determine potential benefits are reviewed and the report concludes that although there is insufficient information available at present to fully quantify all the potential benefits, the annual dollar costs for improved seismic monitoring are in the tens of millions and the potential annual dollar benefits are in the hundreds of millions.
Role of Seismic Testing Facilities in Performance-Based Earthquake Engineering
Author: Michael N Fardis
Publisher: Springer
ISBN: 9789400719781
Category : Technology & Engineering
Languages : en
Pages : 386
Book Description
Nowadays research in earthquake engineering is mainly experimental and in large-scale; advanced computations are integrated with large-scale experiments, to complement them and extend their scope, even by coupling two different but simultaneous tests. Earthquake engineering cannot give answers by testing and qualifying few, small typical components or single large prototypes. Besides, the large diversity of Civil Engineering structures does not allow drawing conclusions from only a few tests; structures are large and their seismic response and performance cannot be meaningfully tested in an ordinary lab or in the field. So, seismic testing facilities should be much larger than in other scientific fields; their staff has to be resourceful, devising intelligent ways to carry out simultaneously different tests and advanced computations. To better serve such a mission European testing facilities and researchers in earthquake engineering have shared their resources and activities in the framework of the European project SERIES, combining their research and jointly developing advanced testing and instrumentation techniques that maximize testing capabilities and increase the value of the tests. This volume presents the first outcomes of the SERIES and its contribution towards Performance-based Earthquake Engineering, i.e., to the most important development in Earthquake Engineering of the past three decades. The concept and the methodologies for performance-based earthquake engineering have now matured. However, they are based mainly on analytical/numerical research; large-scale seismic testing has entered the stage recently. The SERIES Workshop in Ohrid (MK) in Sept. 2010 pooled together the largest European seismic testing facilities, Europe’s best experts in experimental earthquake engineering and select experts from the USA, to present recent research achievements and to address future developments. Audience: This volume will be of interest to researchers and advanced practitioners in structural earthquake engineering, geotechnical earthquake engineering, engineering seismology, and experimental dynamics, including seismic qualification.
Publisher: Springer
ISBN: 9789400719781
Category : Technology & Engineering
Languages : en
Pages : 386
Book Description
Nowadays research in earthquake engineering is mainly experimental and in large-scale; advanced computations are integrated with large-scale experiments, to complement them and extend their scope, even by coupling two different but simultaneous tests. Earthquake engineering cannot give answers by testing and qualifying few, small typical components or single large prototypes. Besides, the large diversity of Civil Engineering structures does not allow drawing conclusions from only a few tests; structures are large and their seismic response and performance cannot be meaningfully tested in an ordinary lab or in the field. So, seismic testing facilities should be much larger than in other scientific fields; their staff has to be resourceful, devising intelligent ways to carry out simultaneously different tests and advanced computations. To better serve such a mission European testing facilities and researchers in earthquake engineering have shared their resources and activities in the framework of the European project SERIES, combining their research and jointly developing advanced testing and instrumentation techniques that maximize testing capabilities and increase the value of the tests. This volume presents the first outcomes of the SERIES and its contribution towards Performance-based Earthquake Engineering, i.e., to the most important development in Earthquake Engineering of the past three decades. The concept and the methodologies for performance-based earthquake engineering have now matured. However, they are based mainly on analytical/numerical research; large-scale seismic testing has entered the stage recently. The SERIES Workshop in Ohrid (MK) in Sept. 2010 pooled together the largest European seismic testing facilities, Europe’s best experts in experimental earthquake engineering and select experts from the USA, to present recent research achievements and to address future developments. Audience: This volume will be of interest to researchers and advanced practitioners in structural earthquake engineering, geotechnical earthquake engineering, engineering seismology, and experimental dynamics, including seismic qualification.
Performance Based Seismic Design for Tall Buildings
Author: Ramin Golesorkhi
Publisher:
ISBN: 9780939493562
Category : Buildings
Languages : en
Pages : 116
Book Description
Performance-Based Seismic Design (PBSD) is a structural design methodology that has become more common in urban centers around the world, particularly for the design of high-rise buildings. The primary benefit of PBSD is that it substantiates exceptions to prescribed code requirements, such as height limits applied to specific structural systems, and allows project teams to demonstrate higher performance levels for structures during a seismic event.However, the methodology also involves significantly more effort in the analysis and design stages, with verification of building performance required at multiple seismic demand levels using Nonlinear Response History Analysis (NRHA). The design process also requires substantial knowledge of overall building performance and analytical modeling, in order to proportion and detail structural systems to meet specific performance objectives.This CTBUH Technical Guide provides structural engineers, developers, and contractors with a general understanding of the PBSD process by presenting case studies that demonstrate the issues commonly encountered when using the methodology, along with their corresponding solutions. The guide also provides references to the latest industry guidelines, as applied in the western United States, with the goal of disseminating these methods to an international audience for the advancement and expansion of PBSD principles worldwide.
Publisher:
ISBN: 9780939493562
Category : Buildings
Languages : en
Pages : 116
Book Description
Performance-Based Seismic Design (PBSD) is a structural design methodology that has become more common in urban centers around the world, particularly for the design of high-rise buildings. The primary benefit of PBSD is that it substantiates exceptions to prescribed code requirements, such as height limits applied to specific structural systems, and allows project teams to demonstrate higher performance levels for structures during a seismic event.However, the methodology also involves significantly more effort in the analysis and design stages, with verification of building performance required at multiple seismic demand levels using Nonlinear Response History Analysis (NRHA). The design process also requires substantial knowledge of overall building performance and analytical modeling, in order to proportion and detail structural systems to meet specific performance objectives.This CTBUH Technical Guide provides structural engineers, developers, and contractors with a general understanding of the PBSD process by presenting case studies that demonstrate the issues commonly encountered when using the methodology, along with their corresponding solutions. The guide also provides references to the latest industry guidelines, as applied in the western United States, with the goal of disseminating these methods to an international audience for the advancement and expansion of PBSD principles worldwide.
Earthquake Engineering
Author: Yousef Bozorgnia
Publisher: CRC Press
ISBN: 0203486242
Category : Technology & Engineering
Languages : en
Pages : 958
Book Description
This multi-contributor book provides comprehensive coverage of earthquake engineering problems, an overview of traditional methods, and the scientific background on recent developments. It discusses computer methods on structural analysis and provides access to the recent design methodologies and serves as a reference for both professionals and res
Publisher: CRC Press
ISBN: 0203486242
Category : Technology & Engineering
Languages : en
Pages : 958
Book Description
This multi-contributor book provides comprehensive coverage of earthquake engineering problems, an overview of traditional methods, and the scientific background on recent developments. It discusses computer methods on structural analysis and provides access to the recent design methodologies and serves as a reference for both professionals and res
Seismic Isolation, Structural Health Monitoring, and Performance Based Seismic Design in Earthquake Engineering
Author: Azer A. Kasimzade
Publisher: Springer
ISBN: 3319931571
Category : Technology & Engineering
Languages : en
Pages : 361
Book Description
This book features chapters based on selected presentations from the International Congress on Advanced Earthquake Resistance of Structures, AERS2016, held in Samsun, Turkey, from 24 to 28 October 2016. It covers the latest advances in three widely popular research areas in Earthquake Engineering: Performance-Based Seismic Design, Seismic Isolation Systems, and Structural Health Monitoring. The book shows the vulnerability of high-rise and seismically isolated buildings to long periods of strong ground motions, and proposes new passive and semi-active structural seismic isolation systems to protect against such effects. These systems are validated through real-time hybrid tests on shaking tables. Structural health monitoring systems provide rapid assessment of structural safety after an earthquake and allow preventive measures to be taken, such as shutting down the elevators and gas lines, before damage occurs. Using the vibration data from instrumented tall buildings, the book demonstrates that large, distant earthquakes and surface waves, which are not accounted for in most attenuation equations, can cause long-duration shaking and damage in tall buildings. The overview of the current performance-based design methodologies includes discussions on the design of tall buildings and the reasons common prescriptive code provisions are not sufficient to address the requirements of tall-building design. In addition, the book explains the modelling and acceptance criteria associated with various performance-based design guidelines, and discusses issues such as selection and scaling of ground motion records, soil-foundation-structure interaction, and seismic instrumentation and peer review needs. The book is of interest to a wide range of professionals in earthquake engineering, including designers, researchers, and graduate students.
Publisher: Springer
ISBN: 3319931571
Category : Technology & Engineering
Languages : en
Pages : 361
Book Description
This book features chapters based on selected presentations from the International Congress on Advanced Earthquake Resistance of Structures, AERS2016, held in Samsun, Turkey, from 24 to 28 October 2016. It covers the latest advances in three widely popular research areas in Earthquake Engineering: Performance-Based Seismic Design, Seismic Isolation Systems, and Structural Health Monitoring. The book shows the vulnerability of high-rise and seismically isolated buildings to long periods of strong ground motions, and proposes new passive and semi-active structural seismic isolation systems to protect against such effects. These systems are validated through real-time hybrid tests on shaking tables. Structural health monitoring systems provide rapid assessment of structural safety after an earthquake and allow preventive measures to be taken, such as shutting down the elevators and gas lines, before damage occurs. Using the vibration data from instrumented tall buildings, the book demonstrates that large, distant earthquakes and surface waves, which are not accounted for in most attenuation equations, can cause long-duration shaking and damage in tall buildings. The overview of the current performance-based design methodologies includes discussions on the design of tall buildings and the reasons common prescriptive code provisions are not sufficient to address the requirements of tall-building design. In addition, the book explains the modelling and acceptance criteria associated with various performance-based design guidelines, and discusses issues such as selection and scaling of ground motion records, soil-foundation-structure interaction, and seismic instrumentation and peer review needs. The book is of interest to a wide range of professionals in earthquake engineering, including designers, researchers, and graduate students.
Earthquake Resistant Design, Protection, and Performance Assessment in Earthquake Engineering
Author: Azer Kasimzade
Publisher: Springer Nature
ISBN: 3031654072
Category :
Languages : en
Pages : 435
Book Description
Publisher: Springer Nature
ISBN: 3031654072
Category :
Languages : en
Pages : 435
Book Description
Seismic Evaluation and Rehabilitation of Structures
Author: Alper Ilki
Publisher: Springer Science & Business Media
ISBN: 3319004581
Category : Science
Languages : en
Pages : 505
Book Description
In the past, facilities considered to be at the end of their useful life were demolished and replaced with new ones that better met the functional requirements of modern society, including new safety standards. Humankind has recently recognised the threats to the environment and to our limited natural resources due to our relentless determination to destroy the old and build anew. With the awareness of these constraints and the emphasis on sustainability, in future the majority of old structures will be retrofitted to extend their service life as long as feasible. In keeping with this new approach, the EU’s Construction Products Regulation 305/2011, which is the basis of the Eurocodes, included the sustainable use of resources as an "Essential Requirement" for construction. So, the forthcoming second generation of EN-Eurocodes will cover not only the design of new structures, but the rehabilitation of existing ones as well. Most of the existing building stock and civil infrastructures are seismically deficient. When the time comes for a decision to prolong their service life with the help of structural and architectural upgrading, seismic retrofitting may be needed. Further, it is often decided to enhance the earthquake resistance of facilities that still meet their functional requirements and fulfil their purpose, if they are not earthquake-safe. In order to decide how badly a structure needs seismic upgrading or to prioritise it in a population of structures, a seismic evaluation is needed, which also serves as a guide for the extent and type of strengthening. Seismic codes do not sufficiently cover the delicate phase of seismic evaluation nor the many potential technical options for seismic upgrading; therefore research is on-going and the state-of-the-art is constantly evolving. All the more so as seismic evaluation and rehabilitation demand considerable expertise, to make best use of the available safety margins in the existing structure, to adapt the engineering capabilities and techniques at hand to the particularities of a project, to minimise disruption of use, etc. Further, as old structures are very diverse in terms of their materials and layout, seismic retrofitting does not lend itself to straightforward codified procedures or cook-book approaches. As such, seismic evaluation and rehabilitation need the best that the current state-of-the-art can offer on all aspects of earthquake engineering. This volume serves this need, as it gathers the most recent research of top seismic experts from around the world on seismic evaluation, retrofitting and closely related subjects.
Publisher: Springer Science & Business Media
ISBN: 3319004581
Category : Science
Languages : en
Pages : 505
Book Description
In the past, facilities considered to be at the end of their useful life were demolished and replaced with new ones that better met the functional requirements of modern society, including new safety standards. Humankind has recently recognised the threats to the environment and to our limited natural resources due to our relentless determination to destroy the old and build anew. With the awareness of these constraints and the emphasis on sustainability, in future the majority of old structures will be retrofitted to extend their service life as long as feasible. In keeping with this new approach, the EU’s Construction Products Regulation 305/2011, which is the basis of the Eurocodes, included the sustainable use of resources as an "Essential Requirement" for construction. So, the forthcoming second generation of EN-Eurocodes will cover not only the design of new structures, but the rehabilitation of existing ones as well. Most of the existing building stock and civil infrastructures are seismically deficient. When the time comes for a decision to prolong their service life with the help of structural and architectural upgrading, seismic retrofitting may be needed. Further, it is often decided to enhance the earthquake resistance of facilities that still meet their functional requirements and fulfil their purpose, if they are not earthquake-safe. In order to decide how badly a structure needs seismic upgrading or to prioritise it in a population of structures, a seismic evaluation is needed, which also serves as a guide for the extent and type of strengthening. Seismic codes do not sufficiently cover the delicate phase of seismic evaluation nor the many potential technical options for seismic upgrading; therefore research is on-going and the state-of-the-art is constantly evolving. All the more so as seismic evaluation and rehabilitation demand considerable expertise, to make best use of the available safety margins in the existing structure, to adapt the engineering capabilities and techniques at hand to the particularities of a project, to minimise disruption of use, etc. Further, as old structures are very diverse in terms of their materials and layout, seismic retrofitting does not lend itself to straightforward codified procedures or cook-book approaches. As such, seismic evaluation and rehabilitation need the best that the current state-of-the-art can offer on all aspects of earthquake engineering. This volume serves this need, as it gathers the most recent research of top seismic experts from around the world on seismic evaluation, retrofitting and closely related subjects.
Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering
Author: National Research Council (U.S.). Committee to Develop a Long-Term Research Agenda for the Network for Earthquake Engineering Simulation (NEES)
Publisher: National Academy Press
ISBN:
Category : Nature
Languages : en
Pages : 200
Book Description
The Network for Earthquake Engineering Simulation (NEES), administered by the National Science Foundation (NSF), is scheduled to become operational in 2004. These network sites will perform a range of experiments to test and validate complex computer models being developed to simulate the behavior of structures subjected to earthquakes. To assist in this effort, the NSF requested the National Research Council(NRC) to frame the major questions to be addressed by and to develop a long-term research agenda for NEES. Preventing Earthquake Disasters presents an overview of the grand challenge including six critical research problems making up that challenge. The report also provides an assessment of earthquake engineering research issues and the role of information technology in that research effort, and a research plan for NEES.
Publisher: National Academy Press
ISBN:
Category : Nature
Languages : en
Pages : 200
Book Description
The Network for Earthquake Engineering Simulation (NEES), administered by the National Science Foundation (NSF), is scheduled to become operational in 2004. These network sites will perform a range of experiments to test and validate complex computer models being developed to simulate the behavior of structures subjected to earthquakes. To assist in this effort, the NSF requested the National Research Council(NRC) to frame the major questions to be addressed by and to develop a long-term research agenda for NEES. Preventing Earthquake Disasters presents an overview of the grand challenge including six critical research problems making up that challenge. The report also provides an assessment of earthquake engineering research issues and the role of information technology in that research effort, and a research plan for NEES.
Monotonic and Cyclic Performance of Sand from Natural Alluvial Deposits
Author: Julijana Bojadjieva
Publisher: Springer Nature
ISBN: 3031762002
Category :
Languages : en
Pages : 128
Book Description
Publisher: Springer Nature
ISBN: 3031762002
Category :
Languages : en
Pages : 128
Book Description