Author: Jing Ba
Publisher: Frontiers Media SA
ISBN: 2889715620
Category : Science
Languages : en
Pages : 359
Book Description
Rock Physics and Geofluid Detection
World Atlas of Submarine Gas Hydrates in Continental Margins
Author: Jürgen Mienert
Publisher: Springer Nature
ISBN: 3030811867
Category : Science
Languages : en
Pages : 515
Book Description
This world atlas presents a comprehensive overview of the gas-hydrate systems of our planet with contributions from esteemed international researchers from academia, governmental institutions and hydrocarbon industries. The book illustrates, describes and discusses gas hydrate systems, their geophysical evidence and their future prospects for climate change and continental margin geohazards from passive to active margins. This includes passive volcanic to non-volcanic margins including glaciated and non-glaciated margins from high to low latitudes. Shallow submarine gas hydrates allow a glimpse into the past from the Last Glacial Maximum (LGM) to modern environmental conditions to predict potential changes in future stability conditions while deep submarine gas hydrates remained more stable. This demonstrates their potential for rapid reactions for some gas hydrate provinces to a warming world, as well as helping to identify future prospects for environmental research. Three-dimensional and high-resolution seismic imaging technologies provide new insights into fluid flow systems in continental margins, enabling the identification of gas and gas escape routes to the seabed within gas hydrate environments, where seabed habitats may flourish. The volume contains a method section detailing the seismic imaging and logging while drilling techniques used to characterize gas hydrates and related dynamic processes in the sub seabed. This book is unique, as it goes well beyond the geophysical monograph series of natural gas hydrates and textbooks on marine geophysics. It also emphasizes the potential for gas hydrate research across a variety of disciplines. Observations of bottom simulating reflectors (BSRs) in 2D and 3D seismic reflection data combined with velocity analysis, electromagnetic investigations and gas-hydrate stability zone (GHSZ) modelling, provide the necessary insights for academic interests and hydrocarbon industries to understand the potential extent and volume of gas hydrates in a wide range of tectonic settings of continental margins. Gas hydrates control the largest and most dynamic reservoir of global carbon. Especially 4D, 3D seismic but also 2D seismic data provide compelling sub-seabed images of their dynamical behavior. Sub-seabed imaging techniques increase our understanding of the controlling mechanisms for the distribution and migration of gas before it enters the gas-hydrate stability zone. As methane hydrate stability depends mainly on pressure, temperature, gas composition and pore water chemistry, gas hydrates are usually found in ocean margin settings where water depth is more than 300 m and gas migrates upward from deeper geological formations. This highly dynamic environment may precondition the stability of continental slopes as evidenced by geohazards and gas expelled from the sea floor. This book provides new insights into variations in the character and existence of gas hydrates and BSRs in various geological environments, as well as their dynamics. The potentially dynamic behavior of this natural carbon system in a warming world, its current and future impacts on a variety of Earth environments can now be adequately evaluated by using the information provided in the world atlas. This book is relevant for students, researchers, governmental agencies and oil and gas professionals. Some familiarity with seismic data and some basic understanding of geology and tectonics are recommended.
Publisher: Springer Nature
ISBN: 3030811867
Category : Science
Languages : en
Pages : 515
Book Description
This world atlas presents a comprehensive overview of the gas-hydrate systems of our planet with contributions from esteemed international researchers from academia, governmental institutions and hydrocarbon industries. The book illustrates, describes and discusses gas hydrate systems, their geophysical evidence and their future prospects for climate change and continental margin geohazards from passive to active margins. This includes passive volcanic to non-volcanic margins including glaciated and non-glaciated margins from high to low latitudes. Shallow submarine gas hydrates allow a glimpse into the past from the Last Glacial Maximum (LGM) to modern environmental conditions to predict potential changes in future stability conditions while deep submarine gas hydrates remained more stable. This demonstrates their potential for rapid reactions for some gas hydrate provinces to a warming world, as well as helping to identify future prospects for environmental research. Three-dimensional and high-resolution seismic imaging technologies provide new insights into fluid flow systems in continental margins, enabling the identification of gas and gas escape routes to the seabed within gas hydrate environments, where seabed habitats may flourish. The volume contains a method section detailing the seismic imaging and logging while drilling techniques used to characterize gas hydrates and related dynamic processes in the sub seabed. This book is unique, as it goes well beyond the geophysical monograph series of natural gas hydrates and textbooks on marine geophysics. It also emphasizes the potential for gas hydrate research across a variety of disciplines. Observations of bottom simulating reflectors (BSRs) in 2D and 3D seismic reflection data combined with velocity analysis, electromagnetic investigations and gas-hydrate stability zone (GHSZ) modelling, provide the necessary insights for academic interests and hydrocarbon industries to understand the potential extent and volume of gas hydrates in a wide range of tectonic settings of continental margins. Gas hydrates control the largest and most dynamic reservoir of global carbon. Especially 4D, 3D seismic but also 2D seismic data provide compelling sub-seabed images of their dynamical behavior. Sub-seabed imaging techniques increase our understanding of the controlling mechanisms for the distribution and migration of gas before it enters the gas-hydrate stability zone. As methane hydrate stability depends mainly on pressure, temperature, gas composition and pore water chemistry, gas hydrates are usually found in ocean margin settings where water depth is more than 300 m and gas migrates upward from deeper geological formations. This highly dynamic environment may precondition the stability of continental slopes as evidenced by geohazards and gas expelled from the sea floor. This book provides new insights into variations in the character and existence of gas hydrates and BSRs in various geological environments, as well as their dynamics. The potentially dynamic behavior of this natural carbon system in a warming world, its current and future impacts on a variety of Earth environments can now be adequately evaluated by using the information provided in the world atlas. This book is relevant for students, researchers, governmental agencies and oil and gas professionals. Some familiarity with seismic data and some basic understanding of geology and tectonics are recommended.
Financial Report - Energy Research and Development Administration
Author: United States. Energy Research and Development Administration
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 52
Book Description
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 52
Book Description
Petroleum Abstracts
Author:
Publisher:
ISBN:
Category : Petroleum
Languages : en
Pages : 798
Book Description
Publisher:
ISBN:
Category : Petroleum
Languages : en
Pages : 798
Book Description
Government Reports Announcements & Index
Author:
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 1068
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 1068
Book Description
Annual Report
Author: Istituto nazionale di oceanografia e di geofisica sperimentale (Italy). Dipartimento oceanografia
Publisher:
ISBN:
Category : Oceanography
Languages : en
Pages : 96
Book Description
Publisher:
ISBN:
Category : Oceanography
Languages : en
Pages : 96
Book Description
Fractal Analysis for Natural Hazards
Author: Giuseppe Cello
Publisher: Geological Society of London
ISBN: 9781862392014
Category : Mathematics
Languages : en
Pages : 190
Book Description
In the Earth Sciences, the concept of fractals and scale invariance is well-recognized in many natural objects. However, the use of fractals for spatial and temporal analyses of natural hazards has been less used (and accepted) in the Earth Sciences. This book brings together twelve contributions that emphasize the role of fractal analyses in natural hazard research, including landslides, wildfires, floods, catastrophic rock fractures and earthquakes. A wide variety of spatial and temporal fractal-related approaches and techniques are applied to 'natural' data, experimental data, and computer simulations. These approaches include probabilistic hazard analysis, cellular-automata models, spatial analyses, temporal variability, prediction, and self-organizing behaviour. The main aims of this volume are to present current research on fractal analyses as applied to natural hazards, and to stimulate the curiosity of advanced Earth Science students and researchers in the use of fractals analyses for the better understanding of natural hazards.
Publisher: Geological Society of London
ISBN: 9781862392014
Category : Mathematics
Languages : en
Pages : 190
Book Description
In the Earth Sciences, the concept of fractals and scale invariance is well-recognized in many natural objects. However, the use of fractals for spatial and temporal analyses of natural hazards has been less used (and accepted) in the Earth Sciences. This book brings together twelve contributions that emphasize the role of fractal analyses in natural hazard research, including landslides, wildfires, floods, catastrophic rock fractures and earthquakes. A wide variety of spatial and temporal fractal-related approaches and techniques are applied to 'natural' data, experimental data, and computer simulations. These approaches include probabilistic hazard analysis, cellular-automata models, spatial analyses, temporal variability, prediction, and self-organizing behaviour. The main aims of this volume are to present current research on fractal analyses as applied to natural hazards, and to stimulate the curiosity of advanced Earth Science students and researchers in the use of fractals analyses for the better understanding of natural hazards.
Annual Report
Author: Istituto nazionale di oceanografia e di geofisica sperimentale (Italy). Dipartimento geofisica della litosfera
Publisher:
ISBN:
Category : Earth
Languages : en
Pages : 104
Book Description
Publisher:
ISBN:
Category : Earth
Languages : en
Pages : 104
Book Description
Experimental Techniques in Mineral and Rock Physics
Author: Robert C. Liebermann
Publisher: Birkhäuser
ISBN: 3034851081
Category : Science
Languages : en
Pages : 437
Book Description
Knowledge of the relation between sonic velocity in sediments and rock lithology is one of the keys to interpreting data from seismic sections or from acoustic logs of sedimentary sequences. Reliable correlations of rock velocity with other petrophysical parameters, such as porosity or density, are essential for calculating impedance models for synthetic seismic sections (BIDDLE et al. , 1992; CAMPBELL and STAFLEU, 1992) or identifying the origin of reflectivity on seismic lines (SELLAMI et al. , 1990; CHRISTENSEN and SZYMANSKI, 1991). Velocity is thus an important parameter for correlating lithological with geophysical data. Recent studies have increased our understanding of elastic rock properties in siliciclastic or shaly sediments. The causes for variations in velocity have been investigated for siliciclastic rocks (VERNIK and NUR, 1992), mixed carbonate siliciclastic sediments (CHRISTENSEN and SZYMANSKI, 1991), synthetic sand-clay mixtures (MARION et aI. , 1992) or claystones (JAPSEN, 1993). The concepts derived from these studies are however only partly applicable in pure carbonates. Carbon ates do not have large compositional variations that are, as is the case in the other sedimentary rocks, responsible for velocity contrasts. Pure carbonates are character ized by the lack of any clay or siliciclastic content, but are mostly produced and deposited on the top or on the slope of isolated or detached carbonate platforms, that have no hinterland as a source of terrigeneous material (WILSON, 1975; EBERLI, 1991).
Publisher: Birkhäuser
ISBN: 3034851081
Category : Science
Languages : en
Pages : 437
Book Description
Knowledge of the relation between sonic velocity in sediments and rock lithology is one of the keys to interpreting data from seismic sections or from acoustic logs of sedimentary sequences. Reliable correlations of rock velocity with other petrophysical parameters, such as porosity or density, are essential for calculating impedance models for synthetic seismic sections (BIDDLE et al. , 1992; CAMPBELL and STAFLEU, 1992) or identifying the origin of reflectivity on seismic lines (SELLAMI et al. , 1990; CHRISTENSEN and SZYMANSKI, 1991). Velocity is thus an important parameter for correlating lithological with geophysical data. Recent studies have increased our understanding of elastic rock properties in siliciclastic or shaly sediments. The causes for variations in velocity have been investigated for siliciclastic rocks (VERNIK and NUR, 1992), mixed carbonate siliciclastic sediments (CHRISTENSEN and SZYMANSKI, 1991), synthetic sand-clay mixtures (MARION et aI. , 1992) or claystones (JAPSEN, 1993). The concepts derived from these studies are however only partly applicable in pure carbonates. Carbon ates do not have large compositional variations that are, as is the case in the other sedimentary rocks, responsible for velocity contrasts. Pure carbonates are character ized by the lack of any clay or siliciclastic content, but are mostly produced and deposited on the top or on the slope of isolated or detached carbonate platforms, that have no hinterland as a source of terrigeneous material (WILSON, 1975; EBERLI, 1991).
Introduction to Geophysical Fluid Dynamics
Author: Benoit Cushman-Roisin
Publisher: Academic Press
ISBN: 0080916783
Category : Science
Languages : en
Pages : 850
Book Description
Introduction to Geophysical Fluid Dynamics provides an introductory-level exploration of geophysical fluid dynamics (GFD), the principles governing air and water flows on large terrestrial scales. Physical principles are illustrated with the aid of the simplest existing models, and the computer methods are shown in juxtaposition with the equations to which they apply. It explores contemporary topics of climate dynamics and equatorial dynamics, including the Greenhouse Effect, global warming, and the El Nino Southern Oscillation. - Combines both physical and numerical aspects of geophysical fluid dynamics into a single affordable volume - Explores contemporary topics such as the Greenhouse Effect, global warming and the El Nino Southern Oscillation - Biographical and historical notes at the ends of chapters trace the intellectual development of the field - Recipient of the 2010 Wernaers Prize, awarded each year by the National Fund for Scientific Research of Belgium (FNR-FNRS)
Publisher: Academic Press
ISBN: 0080916783
Category : Science
Languages : en
Pages : 850
Book Description
Introduction to Geophysical Fluid Dynamics provides an introductory-level exploration of geophysical fluid dynamics (GFD), the principles governing air and water flows on large terrestrial scales. Physical principles are illustrated with the aid of the simplest existing models, and the computer methods are shown in juxtaposition with the equations to which they apply. It explores contemporary topics of climate dynamics and equatorial dynamics, including the Greenhouse Effect, global warming, and the El Nino Southern Oscillation. - Combines both physical and numerical aspects of geophysical fluid dynamics into a single affordable volume - Explores contemporary topics such as the Greenhouse Effect, global warming and the El Nino Southern Oscillation - Biographical and historical notes at the ends of chapters trace the intellectual development of the field - Recipient of the 2010 Wernaers Prize, awarded each year by the National Fund for Scientific Research of Belgium (FNR-FNRS)