Robust Rank-Based and Nonparametric Methods

Robust Rank-Based and Nonparametric Methods PDF Author: Regina Y. Liu
Publisher: Springer
ISBN: 3319390651
Category : Mathematics
Languages : en
Pages : 284

Get Book Here

Book Description
The contributors to this volume include many of the distinguished researchers in this area. Many of these scholars have collaborated with Joseph McKean to develop underlying theory for these methods, obtain small sample corrections, and develop efficient algorithms for their computation. The papers cover the scope of the area, including robust nonparametric rank-based procedures through Bayesian and big data rank-based analyses. Areas of application include biostatistics and spatial areas. Over the last 30 years, robust rank-based and nonparametric methods have developed considerably. These procedures generalize traditional Wilcoxon-type methods for one- and two-sample location problems. Research into these procedures has culminated in complete analyses for many of the models used in practice including linear, generalized linear, mixed, and nonlinear models. Settings are both multivariate and univariate. With the development of R packages in these areas, computation of these procedures is easily shared with readers and implemented. This book is developed from the International Conference on Robust Rank-Based and Nonparametric Methods, held at Western Michigan University in April 2015.

Robust Rank-Based and Nonparametric Methods

Robust Rank-Based and Nonparametric Methods PDF Author: Regina Y. Liu
Publisher: Springer
ISBN: 3319390651
Category : Mathematics
Languages : en
Pages : 284

Get Book Here

Book Description
The contributors to this volume include many of the distinguished researchers in this area. Many of these scholars have collaborated with Joseph McKean to develop underlying theory for these methods, obtain small sample corrections, and develop efficient algorithms for their computation. The papers cover the scope of the area, including robust nonparametric rank-based procedures through Bayesian and big data rank-based analyses. Areas of application include biostatistics and spatial areas. Over the last 30 years, robust rank-based and nonparametric methods have developed considerably. These procedures generalize traditional Wilcoxon-type methods for one- and two-sample location problems. Research into these procedures has culminated in complete analyses for many of the models used in practice including linear, generalized linear, mixed, and nonlinear models. Settings are both multivariate and univariate. With the development of R packages in these areas, computation of these procedures is easily shared with readers and implemented. This book is developed from the International Conference on Robust Rank-Based and Nonparametric Methods, held at Western Michigan University in April 2015.

Robust Nonparametric Statistical Methods

Robust Nonparametric Statistical Methods PDF Author: Thomas P. Hettmansperger
Publisher: John Wiley & Sons
ISBN:
Category : Nonparametric statistics
Languages : en
Pages : 492

Get Book Here

Book Description
Offering an alternative to traditional statistical procedures which are based on least squares fitting, the authors cover such topics as one and two sample location models, linear models, and multivariate models. Both theory and applications are examined.

Nonparametric Statistical Methods Using R

Nonparametric Statistical Methods Using R PDF Author: John Kloke
Publisher: CRC Press
ISBN: 1439873445
Category : Mathematics
Languages : en
Pages : 283

Get Book Here

Book Description
A Practical Guide to Implementing Nonparametric and Rank-Based Procedures Nonparametric Statistical Methods Using R covers traditional nonparametric methods and rank-based analyses, including estimation and inference for models ranging from simple location models to general linear and nonlinear models for uncorrelated and correlated responses. The authors emphasize applications and statistical computation. They illustrate the methods with many real and simulated data examples using R, including the packages Rfit and npsm. The book first gives an overview of the R language and basic statistical concepts before discussing nonparametrics. It presents rank-based methods for one- and two-sample problems, procedures for regression models, computation for general fixed-effects ANOVA and ANCOVA models, and time-to-event analyses. The last two chapters cover more advanced material, including high breakdown fits for general regression models and rank-based inference for cluster correlated data. The book can be used as a primary text or supplement in a course on applied nonparametric or robust procedures and as a reference for researchers who need to implement nonparametric and rank-based methods in practice. Through numerous examples, it shows readers how to apply these methods using R.

Serious Stat

Serious Stat PDF Author: Thomas Baguley
Publisher: Bloomsbury Publishing
ISBN: 0230363555
Category : Psychology
Languages : en
Pages : 864

Get Book Here

Book Description
Ideal for experienced students and researchers in the social sciences who wish to refresh or extend their understanding of statistics, and to apply advanced statistical procedures using SPSS or R. Key theory is reviewed and illustrated with examples of how to apply these concepts using real data.

Selected Works of E. L. Lehmann

Selected Works of E. L. Lehmann PDF Author: Javier Rojo
Publisher: Springer Science & Business Media
ISBN: 1461414113
Category : Mathematics
Languages : en
Pages : 1103

Get Book Here

Book Description
These volumes present a selection of Erich L. Lehmann’s monumental contributions to Statistics. These works are multifaceted. His early work included fundamental contributions to hypothesis testing, theory of point estimation, and more generally to decision theory. His work in Nonparametric Statistics was groundbreaking. His fundamental contributions in this area include results that came to assuage the anxiety of statisticians that were skeptical of nonparametric methodologies, and his work on concepts of dependence has created a large literature. The two volumes are divided into chapters of related works. Invited contributors have critiqued the papers in each chapter, and the reprinted group of papers follows each commentary. A complete bibliography that contains links to recorded talks by Erich Lehmann – and which are freely accessible to the public – and a list of Ph.D. students are also included. These volumes belong in every statistician’s personal collection and are a required holding for any institutional library.

Nonparametric Statistical Methods Using R

Nonparametric Statistical Methods Using R PDF Author: John Kloke
Publisher: CRC Press
ISBN: 1040025153
Category : Mathematics
Languages : en
Pages : 466

Get Book Here

Book Description
Praise for the first edition: “This book would be especially good for the shelf of anyone who already knows nonparametrics, but wants a reference for how to apply those techniques in R.” -The American Statistician This thoroughly updated and expanded second edition of Nonparametric Statistical Methods Using R covers traditional nonparametric methods and rank-based analyses. Two new chapters covering multivariate analyses and big data have been added. Core classical nonparametrics chapters on one- and two-sample problems have been expanded to include discussions on ties as well as power and sample size determination. Common machine learning topics --- including k-nearest neighbors and trees --- have also been included in this new edition. Key Features: Covers a wide range of models including location, linear regression, ANOVA-type, mixed models for cluster correlated data, nonlinear, and GEE-type. Includes robust methods for linear model analyses, big data, time-to-event analyses, timeseries, and multivariate. Numerous examples illustrate the methods and their computation. R packages are available for computation and datasets. Contains two completely new chapters on big data and multivariate analysis. The book is suitable for advanced undergraduate and graduate students in statistics and data science, and students of other majors with a solid background in statistical methods including regression and ANOVA. It will also be of use to researchers working with nonparametric and rank-based methods in practice.

Introduction to Robust Estimation and Hypothesis Testing

Introduction to Robust Estimation and Hypothesis Testing PDF Author: Rand R. Wilcox
Publisher: Academic Press
ISBN: 0123869838
Category : Mathematics
Languages : en
Pages : 713

Get Book Here

Book Description
"This book focuses on the practical aspects of modern and robust statistical methods. The increased accuracy and power of modern methods, versus conventional approaches to the analysis of variance (ANOVA) and regression, is remarkable. Through a combination of theoretical developments, improved and more flexible statistical methods, and the power of the computer, it is now possible to address problems with standard methods that seemed insurmountable only a few years ago"--

All of Nonparametric Statistics

All of Nonparametric Statistics PDF Author: Larry Wasserman
Publisher: Springer Science & Business Media
ISBN: 0387306234
Category : Mathematics
Languages : en
Pages : 272

Get Book Here

Book Description
This text provides the reader with a single book where they can find accounts of a number of up-to-date issues in nonparametric inference. The book is aimed at Masters or PhD level students in statistics, computer science, and engineering. It is also suitable for researchers who want to get up to speed quickly on modern nonparametric methods. It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets. The book’s dual approach includes a mixture of methodology and theory.

An Introduction to Nonparametric Statistics

An Introduction to Nonparametric Statistics PDF Author: John E. Kolassa
Publisher: CRC Press
ISBN: 0429511361
Category : Mathematics
Languages : en
Pages : 225

Get Book Here

Book Description
An Introduction to Nonparametric Statistics presents techniques for statistical analysis in the absence of strong assumptions about the distributions generating the data. Rank-based and resampling techniques are heavily represented, but robust techniques are considered as well. These techniques include one-sample testing and estimation, multi-sample testing and estimation, and regression. Attention is paid to the intellectual development of the field, with a thorough review of bibliographical references. Computational tools, in R and SAS, are developed and illustrated via examples. Exercises designed to reinforce examples are included. Features Rank-based techniques including sign, Kruskal-Wallis, Friedman, Mann-Whitney and Wilcoxon tests are presented Tests are inverted to produce estimates and confidence intervals Multivariate tests are explored Techniques reflecting the dependence of a response variable on explanatory variables are presented Density estimation is explored The bootstrap and jackknife are discussed This text is intended for a graduate student in applied statistics. The course is best taken after an introductory course in statistical methodology, elementary probability, and regression. Mathematical prerequisites include calculus through multivariate differentiation and integration, and, ideally, a course in matrix algebra.

Nonparametrics

Nonparametrics PDF Author: Erich L. Lehmann
Publisher: Springer
ISBN: 9780387563794
Category : Mathematics
Languages : en
Pages : 464

Get Book Here

Book Description
Rank tests are a class of statistical procedures that combine great simplicity with surprising power. This reprint of a classic reference book offers a thorough description of these tests and the estimating procedures derived from them, and gives an account of their properties. Although the field of rank tests has seen little change, important new methodologies have sprung up that also serve the purpose of freeing statistics from the unrealistic model assumptions that so frequently invalidate its applications. All the tests discussed here are now available in a variety of statistical software packages.