Author: Ayşe Özmen
Publisher: Springer
ISBN: 3319308009
Category : Business & Economics
Languages : en
Pages : 143
Book Description
This book introduces methods of robust optimization in multivariate adaptive regression splines (MARS) and Conic MARS in order to handle uncertainty and non-linearity. The proposed techniques are implemented and explained in two-model regulatory systems that can be found in the financial sector and in the contexts of banking, environmental protection, system biology and medicine. The book provides necessary background information on multi-model regulatory networks, optimization and regression. It presents the theory of and approaches to robust (conic) multivariate adaptive regression splines - R(C)MARS – and robust (conic) generalized partial linear models – R(C)GPLM – under polyhedral uncertainty. Further, it introduces spline regression models for multi-model regulatory networks and interprets (C)MARS results based on different datasets for the implementation. It explains robust optimization in these models in terms of both the theory and methodology. In this context it studies R(C)MARS results with different uncertainty scenarios for a numerical example. Lastly, the book demonstrates the implementation of the method in a number of applications from the financial, energy, and environmental sectors, and provides an outlook on future research.
Robust Optimization of Spline Models and Complex Regulatory Networks
Author: Ayşe Özmen
Publisher: Springer
ISBN: 3319308009
Category : Business & Economics
Languages : en
Pages : 143
Book Description
This book introduces methods of robust optimization in multivariate adaptive regression splines (MARS) and Conic MARS in order to handle uncertainty and non-linearity. The proposed techniques are implemented and explained in two-model regulatory systems that can be found in the financial sector and in the contexts of banking, environmental protection, system biology and medicine. The book provides necessary background information on multi-model regulatory networks, optimization and regression. It presents the theory of and approaches to robust (conic) multivariate adaptive regression splines - R(C)MARS – and robust (conic) generalized partial linear models – R(C)GPLM – under polyhedral uncertainty. Further, it introduces spline regression models for multi-model regulatory networks and interprets (C)MARS results based on different datasets for the implementation. It explains robust optimization in these models in terms of both the theory and methodology. In this context it studies R(C)MARS results with different uncertainty scenarios for a numerical example. Lastly, the book demonstrates the implementation of the method in a number of applications from the financial, energy, and environmental sectors, and provides an outlook on future research.
Publisher: Springer
ISBN: 3319308009
Category : Business & Economics
Languages : en
Pages : 143
Book Description
This book introduces methods of robust optimization in multivariate adaptive regression splines (MARS) and Conic MARS in order to handle uncertainty and non-linearity. The proposed techniques are implemented and explained in two-model regulatory systems that can be found in the financial sector and in the contexts of banking, environmental protection, system biology and medicine. The book provides necessary background information on multi-model regulatory networks, optimization and regression. It presents the theory of and approaches to robust (conic) multivariate adaptive regression splines - R(C)MARS – and robust (conic) generalized partial linear models – R(C)GPLM – under polyhedral uncertainty. Further, it introduces spline regression models for multi-model regulatory networks and interprets (C)MARS results based on different datasets for the implementation. It explains robust optimization in these models in terms of both the theory and methodology. In this context it studies R(C)MARS results with different uncertainty scenarios for a numerical example. Lastly, the book demonstrates the implementation of the method in a number of applications from the financial, energy, and environmental sectors, and provides an outlook on future research.
Intelligent Computing and Optimization
Author: Pandian Vasant
Publisher: Springer Nature
ISBN: 3030335852
Category : Technology & Engineering
Languages : en
Pages : 707
Book Description
This book presents the outcomes of the second edition of the International Conference on Intelligent Computing and Optimization (ICO) – ICO 2019, which took place on October 3–4, 2019, in Koh Samui, Thailand. Bringing together research scholars, experts, and investigators from around the globe, the conference provided a platform to share novel research findings, recent advances and innovative applications in the field. Discussing the need for smart disciplinary processes embedded into interdisciplinary collaborations in the context of meeting the growing global populations’ requirements, such as food and health care, the book highlights the role of intelligent computation and optimization as key technologies in decision-making processes and in providing cutting edge solutions to real-world problems.
Publisher: Springer Nature
ISBN: 3030335852
Category : Technology & Engineering
Languages : en
Pages : 707
Book Description
This book presents the outcomes of the second edition of the International Conference on Intelligent Computing and Optimization (ICO) – ICO 2019, which took place on October 3–4, 2019, in Koh Samui, Thailand. Bringing together research scholars, experts, and investigators from around the globe, the conference provided a platform to share novel research findings, recent advances and innovative applications in the field. Discussing the need for smart disciplinary processes embedded into interdisciplinary collaborations in the context of meeting the growing global populations’ requirements, such as food and health care, the book highlights the role of intelligent computation and optimization as key technologies in decision-making processes and in providing cutting edge solutions to real-world problems.
Operations Research
Author: Vilda Purutçuoğlu
Publisher: CRC Press
ISBN: 1000800121
Category : Business & Economics
Languages : en
Pages : 277
Book Description
Operation Research methods are often used in every field of modern life like industry, economy and medicine. The authors have compiled of the latest advancements in these methods in this volume comprising some of what is considered the best collection of these new approaches. These can be counted as a direct shortcut to what you may search for. This book provides useful applications of the new developments in OR written by leading scientists from some international universities. Another volume about exciting applications of Operations Research is planned in the near future. We hope you enjoy and benefit from this series!
Publisher: CRC Press
ISBN: 1000800121
Category : Business & Economics
Languages : en
Pages : 277
Book Description
Operation Research methods are often used in every field of modern life like industry, economy and medicine. The authors have compiled of the latest advancements in these methods in this volume comprising some of what is considered the best collection of these new approaches. These can be counted as a direct shortcut to what you may search for. This book provides useful applications of the new developments in OR written by leading scientists from some international universities. Another volume about exciting applications of Operations Research is planned in the near future. We hope you enjoy and benefit from this series!
Modeling and Simulation of Social-Behavioral Phenomena in Creative Societies
Author: Nitin Agarwal
Publisher: Springer Nature
ISBN: 3030298620
Category : Computers
Languages : en
Pages : 153
Book Description
This volume constitutes the proceedings of the First International EURO Mini Conference on Modelling and Simulation of Social-Behavioural Phenomena in Creative Societies, MSBC 2019, held in Vilnius, Lithuania, in September 2019. The 8 full papers and 2 short papers presented were carefully reviewed and selected from 26 submissions. The papers are organized in the following topical sections: computational intelligence in social sciences; modeling and analysis of social-behavioral processes.
Publisher: Springer Nature
ISBN: 3030298620
Category : Computers
Languages : en
Pages : 153
Book Description
This volume constitutes the proceedings of the First International EURO Mini Conference on Modelling and Simulation of Social-Behavioural Phenomena in Creative Societies, MSBC 2019, held in Vilnius, Lithuania, in September 2019. The 8 full papers and 2 short papers presented were carefully reviewed and selected from 26 submissions. The papers are organized in the following topical sections: computational intelligence in social sciences; modeling and analysis of social-behavioral processes.
Spline Regression Models
Author: Lawrence C. Marsh
Publisher: SAGE
ISBN: 9780761924203
Category : Mathematics
Languages : en
Pages : 86
Book Description
Spline Regression Models shows how to use dummy variables to formulate and estimate spline regression models both in situations where the number and location of the spline knots are known in advance, and where estimation is required.
Publisher: SAGE
ISBN: 9780761924203
Category : Mathematics
Languages : en
Pages : 86
Book Description
Spline Regression Models shows how to use dummy variables to formulate and estimate spline regression models both in situations where the number and location of the spline knots are known in advance, and where estimation is required.
Generalized Additive Models
Author: Simon Wood
Publisher: CRC Press
ISBN: 1584884746
Category : Mathematics
Languages : en
Pages : 412
Book Description
Now in widespread use, generalized additive models (GAMs) have evolved into a standard statistical methodology of considerable flexibility. While Hastie and Tibshirani's outstanding 1990 research monograph on GAMs is largely responsible for this, there has been a long-standing need for an accessible introductory treatment of the subject that also emphasizes recent penalized regression spline approaches to GAMs and the mixed model extensions of these models. Generalized Additive Models: An Introduction with R imparts a thorough understanding of the theory and practical applications of GAMs and related advanced models, enabling informed use of these very flexible tools. The author bases his approach on a framework of penalized regression splines, and builds a well-grounded foundation through motivating chapters on linear and generalized linear models. While firmly focused on the practical aspects of GAMs, discussions include fairly full explanations of the theory underlying the methods. Use of the freely available R software helps explain the theory and illustrates the practicalities of linear, generalized linear, and generalized additive models, as well as their mixed effect extensions. The treatment is rich with practical examples, and it includes an entire chapter on the analysis of real data sets using R and the author's add-on package mgcv. Each chapter includes exercises, for which complete solutions are provided in an appendix. Concise, comprehensive, and essentially self-contained, Generalized Additive Models: An Introduction with R prepares readers with the practical skills and the theoretical background needed to use and understand GAMs and to move on to other GAM-related methods and models, such as SS-ANOVA, P-splines, backfitting and Bayesian approaches to smoothing and additive modelling.
Publisher: CRC Press
ISBN: 1584884746
Category : Mathematics
Languages : en
Pages : 412
Book Description
Now in widespread use, generalized additive models (GAMs) have evolved into a standard statistical methodology of considerable flexibility. While Hastie and Tibshirani's outstanding 1990 research monograph on GAMs is largely responsible for this, there has been a long-standing need for an accessible introductory treatment of the subject that also emphasizes recent penalized regression spline approaches to GAMs and the mixed model extensions of these models. Generalized Additive Models: An Introduction with R imparts a thorough understanding of the theory and practical applications of GAMs and related advanced models, enabling informed use of these very flexible tools. The author bases his approach on a framework of penalized regression splines, and builds a well-grounded foundation through motivating chapters on linear and generalized linear models. While firmly focused on the practical aspects of GAMs, discussions include fairly full explanations of the theory underlying the methods. Use of the freely available R software helps explain the theory and illustrates the practicalities of linear, generalized linear, and generalized additive models, as well as their mixed effect extensions. The treatment is rich with practical examples, and it includes an entire chapter on the analysis of real data sets using R and the author's add-on package mgcv. Each chapter includes exercises, for which complete solutions are provided in an appendix. Concise, comprehensive, and essentially self-contained, Generalized Additive Models: An Introduction with R prepares readers with the practical skills and the theoretical background needed to use and understand GAMs and to move on to other GAM-related methods and models, such as SS-ANOVA, P-splines, backfitting and Bayesian approaches to smoothing and additive modelling.
Process Modelling and Simulation
Author: César de Prada
Publisher: MDPI
ISBN: 3039214551
Category : Technology & Engineering
Languages : en
Pages : 298
Book Description
Since process models are nowadays ubiquitous in many applications, the challenges and alternatives related to their development, validation, and efficient use have become more apparent. In addition, the massive amounts of both offline and online data available today open the door for new applications and solutions. However, transforming data into useful models and information in the context of the process industry or of bio-systems requires specific approaches and considerations such as new modelling methodologies incorporating the complex, stochastic, hybrid and distributed nature of many processes in particular. The same can be said about the tools and software environments used to describe, code, and solve such models for their further exploitation. Going well beyond mere simulation tools, these advanced tools offer a software suite built around the models, facilitating tasks such as experiment design, parameter estimation, model initialization, validation, analysis, size reduction, discretization, optimization, distributed computation, co-simulation, etc. This Special Issue collects novel developments in these topics in order to address the challenges brought by the use of models in their different facets, and to reflect state of the art developments in methods, tools and industrial applications.
Publisher: MDPI
ISBN: 3039214551
Category : Technology & Engineering
Languages : en
Pages : 298
Book Description
Since process models are nowadays ubiquitous in many applications, the challenges and alternatives related to their development, validation, and efficient use have become more apparent. In addition, the massive amounts of both offline and online data available today open the door for new applications and solutions. However, transforming data into useful models and information in the context of the process industry or of bio-systems requires specific approaches and considerations such as new modelling methodologies incorporating the complex, stochastic, hybrid and distributed nature of many processes in particular. The same can be said about the tools and software environments used to describe, code, and solve such models for their further exploitation. Going well beyond mere simulation tools, these advanced tools offer a software suite built around the models, facilitating tasks such as experiment design, parameter estimation, model initialization, validation, analysis, size reduction, discretization, optimization, distributed computation, co-simulation, etc. This Special Issue collects novel developments in these topics in order to address the challenges brought by the use of models in their different facets, and to reflect state of the art developments in methods, tools and industrial applications.
Quality Engineering
Author: Chao-Ton Su
Publisher: CRC Press
ISBN: 1466569484
Category : Business & Economics
Languages : en
Pages : 391
Book Description
As quality becomes an increasingly essential factor for achieving business success, building quality improvement into all stages—product planning, product design, and process design—instead of just manufacturing has also become essential. Quality Engineering: Off-Line Methods and Applications explores how to use quality engineering methods and other modern techniques to ensure design optimization at every stage. The book takes a broad approach, focusing on the user’s perspective and building a well-structured framework for the study and implementation of quality engineering. Starting with the basics, this book presents an overall picture of quality engineering. The author delineates quality engineering methods such as DOE, Taguchi, and RSM as well as computational intelligence approaches. He discusses how to use a general computational intelligence approach to improve product quality and process performance. He also provides extensive examples and case studies, numerous exercises, and a glossary of basic terms. By adopting quality engineering, the defect rate during manufacturing shows noticeable improvement, the production cost is significantly lower, and the quality and reliability of products can be enhanced. Taking an integrated approach that makes the methods of upstream quality improvement accessible, without extensive mathematical treatments, this book is both a practical reference and an excellent textbook.
Publisher: CRC Press
ISBN: 1466569484
Category : Business & Economics
Languages : en
Pages : 391
Book Description
As quality becomes an increasingly essential factor for achieving business success, building quality improvement into all stages—product planning, product design, and process design—instead of just manufacturing has also become essential. Quality Engineering: Off-Line Methods and Applications explores how to use quality engineering methods and other modern techniques to ensure design optimization at every stage. The book takes a broad approach, focusing on the user’s perspective and building a well-structured framework for the study and implementation of quality engineering. Starting with the basics, this book presents an overall picture of quality engineering. The author delineates quality engineering methods such as DOE, Taguchi, and RSM as well as computational intelligence approaches. He discusses how to use a general computational intelligence approach to improve product quality and process performance. He also provides extensive examples and case studies, numerous exercises, and a glossary of basic terms. By adopting quality engineering, the defect rate during manufacturing shows noticeable improvement, the production cost is significantly lower, and the quality and reliability of products can be enhanced. Taking an integrated approach that makes the methods of upstream quality improvement accessible, without extensive mathematical treatments, this book is both a practical reference and an excellent textbook.
Robust Optimization
Author: Aharon Ben-Tal
Publisher: Princeton University Press
ISBN: 1400831059
Category : Mathematics
Languages : en
Pages : 565
Book Description
Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject. Robust optimization is designed to meet some major challenges associated with uncertainty-affected optimization problems: to operate under lack of full information on the nature of uncertainty; to model the problem in a form that can be solved efficiently; and to provide guarantees about the performance of the solution. The book starts with a relatively simple treatment of uncertain linear programming, proceeding with a deep analysis of the interconnections between the construction of appropriate uncertainty sets and the classical chance constraints (probabilistic) approach. It then develops the robust optimization theory for uncertain conic quadratic and semidefinite optimization problems and dynamic (multistage) problems. The theory is supported by numerous examples and computational illustrations. An essential book for anyone working on optimization and decision making under uncertainty, Robust Optimization also makes an ideal graduate textbook on the subject.
Publisher: Princeton University Press
ISBN: 1400831059
Category : Mathematics
Languages : en
Pages : 565
Book Description
Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject. Robust optimization is designed to meet some major challenges associated with uncertainty-affected optimization problems: to operate under lack of full information on the nature of uncertainty; to model the problem in a form that can be solved efficiently; and to provide guarantees about the performance of the solution. The book starts with a relatively simple treatment of uncertain linear programming, proceeding with a deep analysis of the interconnections between the construction of appropriate uncertainty sets and the classical chance constraints (probabilistic) approach. It then develops the robust optimization theory for uncertain conic quadratic and semidefinite optimization problems and dynamic (multistage) problems. The theory is supported by numerous examples and computational illustrations. An essential book for anyone working on optimization and decision making under uncertainty, Robust Optimization also makes an ideal graduate textbook on the subject.
Feedback Control in Systems Biology
Author: Carlo Cosentino
Publisher: CRC Press
ISBN: 1439816905
Category : Mathematics
Languages : en
Pages : 298
Book Description
Like engineering systems, biological systems must also operate effectively in the presence of internal and external uncertainty—such as genetic mutations or temperature changes, for example. It is not surprising, then, that evolution has resulted in the widespread use of feedback, and research in systems biology over the past decade has shown that feedback control systems are widely found in biology. As an increasing number of researchers in the life sciences become interested in control-theoretic ideas such as feedback, stability, noise and disturbance attenuation, and robustness, there is a need for a text that explains feedback control as it applies to biological systems. Written by established researchers in both control engineering and systems biology, Feedback Control in Systems Biology explains how feedback control concepts can be applied to systems biology. Filling the need for a text on control theory for systems biologists, it provides an overview of relevant ideas and methods from control engineering and illustrates their application to the analysis of biological systems with case studies in cellular and molecular biology. Control Theory for Systems Biologists The book focuses on the fundamental concepts used to analyze the effects of feedback in biological control systems, rather than the control system design methods that form the core of most control textbooks. In addition, the authors do not assume that readers are familiar with control theory. They focus on "control applications" such as metabolic and gene-regulatory networks rather than aircraft, robots, or engines, and on mathematical models derived from classical reaction kinetics rather than classical mechanics. Another significant feature of the book is that it discusses nonlinear systems, an understanding of which is crucial for systems biologists because of the highly nonlinear nature of biological systems. The authors cover tools and techniques for the analysis of linear and nonlinear systems; negative and positive feedback; robustness analysis methods; techniques for the reverse-engineering of biological interaction networks; and the analysis of stochastic biological control systems. They also identify new research directions for control theory inspired by the dynamic characteristics of biological systems. A valuable reference for researchers, this text offers a sound starting point for scientists entering this fascinating and rapidly developing field.
Publisher: CRC Press
ISBN: 1439816905
Category : Mathematics
Languages : en
Pages : 298
Book Description
Like engineering systems, biological systems must also operate effectively in the presence of internal and external uncertainty—such as genetic mutations or temperature changes, for example. It is not surprising, then, that evolution has resulted in the widespread use of feedback, and research in systems biology over the past decade has shown that feedback control systems are widely found in biology. As an increasing number of researchers in the life sciences become interested in control-theoretic ideas such as feedback, stability, noise and disturbance attenuation, and robustness, there is a need for a text that explains feedback control as it applies to biological systems. Written by established researchers in both control engineering and systems biology, Feedback Control in Systems Biology explains how feedback control concepts can be applied to systems biology. Filling the need for a text on control theory for systems biologists, it provides an overview of relevant ideas and methods from control engineering and illustrates their application to the analysis of biological systems with case studies in cellular and molecular biology. Control Theory for Systems Biologists The book focuses on the fundamental concepts used to analyze the effects of feedback in biological control systems, rather than the control system design methods that form the core of most control textbooks. In addition, the authors do not assume that readers are familiar with control theory. They focus on "control applications" such as metabolic and gene-regulatory networks rather than aircraft, robots, or engines, and on mathematical models derived from classical reaction kinetics rather than classical mechanics. Another significant feature of the book is that it discusses nonlinear systems, an understanding of which is crucial for systems biologists because of the highly nonlinear nature of biological systems. The authors cover tools and techniques for the analysis of linear and nonlinear systems; negative and positive feedback; robustness analysis methods; techniques for the reverse-engineering of biological interaction networks; and the analysis of stochastic biological control systems. They also identify new research directions for control theory inspired by the dynamic characteristics of biological systems. A valuable reference for researchers, this text offers a sound starting point for scientists entering this fascinating and rapidly developing field.