Robust Light Transport Simulation Using Progressive Density Estimation

Robust Light Transport Simulation Using Progressive Density Estimation PDF Author: Toshiya Hachisuka
Publisher:
ISBN: 9781124881843
Category :
Languages : en
Pages : 194

Get Book Here

Book Description
This dissertation introduces a new light transport simulation framework that significantly expands a class of scene configurations that we can handle. The main contribution is a novel density estimation method, called progressive density estimation, which addresses fundamental limitations of existing density estimation methods. The key feature of progressive density estimation is that the method does not need to store a full set of samples to guarantee convergence to the correct solution. Progressive density estimation led to a new light transport algorithm which can simulate many optical configurations that would be impractical to handle with any existing algorithm. In particular, the algorithm can efficiently simulate complex lighting fixtures from the filament/LED-level for the first time. This dissertation also extends this basic framework of progressive density estimation. We first introduce a practical error estimator for progressive density estimation. This method can estimate how much expected error exists for a given computed solution without needing any knowledge of the correct solution. Since we often need to estimate average illumination over a region that is unknown before computation in computer graphics, we developed stochastic progressive density estimation which provides a simple solution to this problem. This estimator extends progressive density estimation for computing average density over unknown region with provable convergence. In order to improve computational efficiency of the proposed framework, we applied an adaptive Markov chain Monte Carlo method to light transport simulation. With this adaptive algorithm, we can focus computation on only to the visible region. To our knowledge, this is the first application of adaptive Markov chain Monte Carlo methods in light transport simulation. We also propose a novel framework that achieves the adaptive combination of progressive density estimation and other approaches based on Monte Carlo integration. In order to develop this framework, we conducted theoretical analysis of a provably good combination of density estimation methods and Monte Carlo integration. For parallel computation of the proposed framework, we developed a new spatial hashing method. This new hashing algorithm is designed to work correctly regardless of the result of contentions in parallel processes as opposed to avoiding the contentions.

Robust Light Transport Simulation Using Progressive Density Estimation

Robust Light Transport Simulation Using Progressive Density Estimation PDF Author: Toshiya Hachisuka
Publisher:
ISBN: 9781124881843
Category :
Languages : en
Pages : 194

Get Book Here

Book Description
This dissertation introduces a new light transport simulation framework that significantly expands a class of scene configurations that we can handle. The main contribution is a novel density estimation method, called progressive density estimation, which addresses fundamental limitations of existing density estimation methods. The key feature of progressive density estimation is that the method does not need to store a full set of samples to guarantee convergence to the correct solution. Progressive density estimation led to a new light transport algorithm which can simulate many optical configurations that would be impractical to handle with any existing algorithm. In particular, the algorithm can efficiently simulate complex lighting fixtures from the filament/LED-level for the first time. This dissertation also extends this basic framework of progressive density estimation. We first introduce a practical error estimator for progressive density estimation. This method can estimate how much expected error exists for a given computed solution without needing any knowledge of the correct solution. Since we often need to estimate average illumination over a region that is unknown before computation in computer graphics, we developed stochastic progressive density estimation which provides a simple solution to this problem. This estimator extends progressive density estimation for computing average density over unknown region with provable convergence. In order to improve computational efficiency of the proposed framework, we applied an adaptive Markov chain Monte Carlo method to light transport simulation. With this adaptive algorithm, we can focus computation on only to the visible region. To our knowledge, this is the first application of adaptive Markov chain Monte Carlo methods in light transport simulation. We also propose a novel framework that achieves the adaptive combination of progressive density estimation and other approaches based on Monte Carlo integration. In order to develop this framework, we conducted theoretical analysis of a provably good combination of density estimation methods and Monte Carlo integration. For parallel computation of the proposed framework, we developed a new spatial hashing method. This new hashing algorithm is designed to work correctly regardless of the result of contentions in parallel processes as opposed to avoiding the contentions.

Density Estimation Techniques for Robust Light Transport Simulation

Density Estimation Techniques for Robust Light Transport Simulation PDF Author: 張子捷
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Handbook of Digital Image Synthesis

Handbook of Digital Image Synthesis PDF Author: Vincent Pegoraro
Publisher: CRC Press
ISBN: 1315395215
Category : Computers
Languages : en
Pages : 880

Get Book Here

Book Description
The Handbook of Digital Image Synthesis is the most up-to-date reference guide in the rapidly developing field of computer graphics. A wide range of topics, such as, applied mathematics, data structures, and optical perception and imaging help to provide a well-rounded view of the necessary formulas for computer rendering. In addition to this diverse approach, the presentation of the material is substantiated by numerous figures and computer-generated images. From basic principles to advanced theories, this book, provides the reader with a strong foundation of computer formulas and rendering through a step-by-step process. . Key Features: Provides unified coverage of the broad range of fundamental topics in rendering Gives in-depth treatment of the basic and advanced concepts in each topic Presents a step-by-step derivation of the theoretical results needed for implementation Illustrates the concepts with numerous figures and computer-generated images Illustrates the core algorithms using platform-independent pseudo-code

Physically Based Rendering, fourth edition

Physically Based Rendering, fourth edition PDF Author: Matt Pharr
Publisher: MIT Press
ISBN: 026237403X
Category : Computers
Languages : en
Pages : 1274

Get Book Here

Book Description
A comprehensive update of the leading-edge computer graphics textbook that sets the standard for physically-based rendering in the industry and the field, with new material on GPU ray tracing. Photorealistic computer graphics are ubiquitous in today’s world, widely used in movies and video games as well as product design and architecture. Physically-based approaches to rendering, where an accurate modeling of the physics of light scattering is at the heart of image synthesis, offer both visual realism and predictability. Now in a comprehensively updated new edition, this best-selling computer graphics textbook sets the standard for physically-based rendering in the industry and the field. Physically Based Rendering describes both the mathematical theory behind a modern photorealistic rendering system as well as its practical implementation. A method known as literate programming combines human-readable documentation and source code into a single reference that is specifically designed to aid comprehension. The book’s leading-edge algorithms, software, and ideas—including new material on GPU ray tracing—equip the reader to design and employ a full-featured rendering system capable of creating stunning imagery. This essential text represents the future of real-time graphics. Detailed and rigorous but accessible approach guides readers all the way from theory to practical software implementation Fourth edition features new chapter on GPU ray tracing essential for game developers The premier reference for professionals learning about and working in the field Won its authors a 2014 Academy Award for Scientific and Technical Achievement Includes a companion site complete with source code

Physically Based Rendering

Physically Based Rendering PDF Author: Matt Pharr
Publisher: Morgan Kaufmann
ISBN: 0128007095
Category : Computers
Languages : en
Pages : 1270

Get Book Here

Book Description
Physically Based Rendering: From Theory to Implementation, Third Edition, describes both the mathematical theory behind a modern photorealistic rendering system and its practical implementation. Through a method known as 'literate programming', the authors combine human-readable documentation and source code into a single reference that is specifically designed to aid comprehension. The result is a stunning achievement in graphics education. Through the ideas and software in this book, users will learn to design and employ a fully-featured rendering system for creating stunning imagery. This completely updated and revised edition includes new coverage on ray-tracing hair and curves primitives, numerical precision issues with ray tracing, LBVHs, realistic camera models, the measurement equation, and much more. It is a must-have, full color resource on physically-based rendering. Presents up-to-date revisions of the seminal reference on rendering, including new sections on bidirectional path tracing, numerical robustness issues in ray tracing, realistic camera models, and subsurface scattering Provides the source code for a complete rendering system allowing readers to get up and running fast Includes a unique indexing feature, literate programming, that lists the locations of each function, variable, and method on the page where they are first described Serves as an essential resource on physically-based rendering

Modern Foundations of Light Transport Simulation

Modern Foundations of Light Transport Simulation PDF Author: Christian Lessig
Publisher:
ISBN: 9780494974148
Category :
Languages : en
Pages :

Get Book Here

Book Description


Monte Carlo and Quasi-Monte Carlo Methods 2012

Monte Carlo and Quasi-Monte Carlo Methods 2012 PDF Author: Josef Dick
Publisher: Springer Science & Business Media
ISBN: 3642410952
Category : Mathematics
Languages : en
Pages : 680

Get Book Here

Book Description
This book represents the refereed proceedings of the Tenth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of New South Wales (Australia) in February 2012. These biennial conferences are major events for Monte Carlo and the premiere event for quasi-Monte Carlo research. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. The reader will be provided with information on latest developments in these very active areas. The book is an excellent reference for theoreticians and practitioners interested in solving high-dimensional computational problems arising, in particular, in finance, statistics and computer graphics.

Faster and More Robust Algorithms for Monte Carlo Light Transport Simulation

Faster and More Robust Algorithms for Monte Carlo Light Transport Simulation PDF Author: Johannes Jendersie
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Monte Carlo and Quasi-Monte Carlo Methods

Monte Carlo and Quasi-Monte Carlo Methods PDF Author: Art B. Owen
Publisher: Springer
ISBN: 3319914367
Category : Computers
Languages : en
Pages : 476

Get Book Here

Book Description
This book presents the refereed proceedings of the Twelfth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at Stanford University (California) in August 2016. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising in particular, in finance, statistics, computer graphics and the solution of PDEs.

Two Algorithms for Progressive Computation of Accurate Global Illumination

Two Algorithms for Progressive Computation of Accurate Global Illumination PDF Author: Parag Prabhakar Tole
Publisher:
ISBN:
Category :
Languages : en
Pages : 260

Get Book Here

Book Description