Author: Tengfei Liu
Publisher: Springer Nature
ISBN: 9811550131
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
This book presents a study on the novel concept of "event-triggered control of nonlinear systems subject to disturbances", discussing the theory and practical applications. Richly illustrated, it is a valuable resource for researchers, engineers and graduate students in automation engineering who wish to learn the theories, technologies, and applications of event-triggered control of nonlinear systems.
Robust Event-Triggered Control of Nonlinear Systems
Author: Tengfei Liu
Publisher: Springer Nature
ISBN: 9811550131
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
This book presents a study on the novel concept of "event-triggered control of nonlinear systems subject to disturbances", discussing the theory and practical applications. Richly illustrated, it is a valuable resource for researchers, engineers and graduate students in automation engineering who wish to learn the theories, technologies, and applications of event-triggered control of nonlinear systems.
Publisher: Springer Nature
ISBN: 9811550131
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
This book presents a study on the novel concept of "event-triggered control of nonlinear systems subject to disturbances", discussing the theory and practical applications. Richly illustrated, it is a valuable resource for researchers, engineers and graduate students in automation engineering who wish to learn the theories, technologies, and applications of event-triggered control of nonlinear systems.
Event-Triggered Transmission Protocol in Robust Control Systems
Author: Niladri Sekhar Tripathy
Publisher: CRC Press
ISBN: 1000610659
Category : Technology & Engineering
Languages : en
Pages : 199
Book Description
Controlling uncertain networked control system (NCS) with limited communication among subcomponents is a challenging task and event-based sampling helps resolve the issue. This book considers event-triggered scheme as a transmission protocol to negotiate information exchange in resilient control for NCS via a robust control algorithm to regulate the closed loop behavior of NCS in the presence of mismatched uncertainty with limited feedback information. It includes robust control algorithm for linear and nonlinear systems with verification. Features: Describes optimal control based robust control law for event-triggered systems. States results in terms of Theorems and Lemmas supported with detailed proofs. Presents the combination of network interconnected systems and robust control strategy. Includes algorithmic steps for precise understanding of the control technique. Covers detailed problem statement and proposed solutions along with numerical examples. This book aims at Senior undergraduate, Graduate students, and Researchers in Control Engineering, Robotics and Signal Processing.
Publisher: CRC Press
ISBN: 1000610659
Category : Technology & Engineering
Languages : en
Pages : 199
Book Description
Controlling uncertain networked control system (NCS) with limited communication among subcomponents is a challenging task and event-based sampling helps resolve the issue. This book considers event-triggered scheme as a transmission protocol to negotiate information exchange in resilient control for NCS via a robust control algorithm to regulate the closed loop behavior of NCS in the presence of mismatched uncertainty with limited feedback information. It includes robust control algorithm for linear and nonlinear systems with verification. Features: Describes optimal control based robust control law for event-triggered systems. States results in terms of Theorems and Lemmas supported with detailed proofs. Presents the combination of network interconnected systems and robust control strategy. Includes algorithmic steps for precise understanding of the control technique. Covers detailed problem statement and proposed solutions along with numerical examples. This book aims at Senior undergraduate, Graduate students, and Researchers in Control Engineering, Robotics and Signal Processing.
Robust Receding Horizon Control for Networked and Distributed Nonlinear Systems
Author: Huiping Li
Publisher: Springer
ISBN: 3319482904
Category : Technology & Engineering
Languages : en
Pages : 194
Book Description
This book offers a comprehensive, easy-to-understand overview of receding-horizon control for nonlinear networks. It presents novel general strategies that can simultaneously handle general nonlinear dynamics, system constraints, and disturbances arising in networked and large-scale systems and which can be widely applied. These receding-horizon-control-based strategies can achieve sub-optimal control performance while ensuring closed-loop stability: a feature attractive to engineers. The authors address the problems of networked and distributed control step-by-step, gradually increasing the level of challenge presented. The book first introduces the state-feedback control problems of nonlinear networked systems and then studies output feedback control problems. For large-scale nonlinear systems, disturbance is considered first, then communication delay separately, and lastly the simultaneous combination of delays and disturbances. Each chapter of this easy-to-follow book not only proposes and analyzes novel control algorithms and/or strategies, but also rigorously develops provably correct design conditions. It also provides concise, illustrative examples to demonstrate the implementation procedure, making it invaluable both for academic researchers and engineering practitioners.
Publisher: Springer
ISBN: 3319482904
Category : Technology & Engineering
Languages : en
Pages : 194
Book Description
This book offers a comprehensive, easy-to-understand overview of receding-horizon control for nonlinear networks. It presents novel general strategies that can simultaneously handle general nonlinear dynamics, system constraints, and disturbances arising in networked and large-scale systems and which can be widely applied. These receding-horizon-control-based strategies can achieve sub-optimal control performance while ensuring closed-loop stability: a feature attractive to engineers. The authors address the problems of networked and distributed control step-by-step, gradually increasing the level of challenge presented. The book first introduces the state-feedback control problems of nonlinear networked systems and then studies output feedback control problems. For large-scale nonlinear systems, disturbance is considered first, then communication delay separately, and lastly the simultaneous combination of delays and disturbances. Each chapter of this easy-to-follow book not only proposes and analyzes novel control algorithms and/or strategies, but also rigorously develops provably correct design conditions. It also provides concise, illustrative examples to demonstrate the implementation procedure, making it invaluable both for academic researchers and engineering practitioners.
Robust Adaptive Dynamic Programming
Author: Yu Jiang
Publisher: John Wiley & Sons
ISBN: 1119132657
Category : Science
Languages : en
Pages : 220
Book Description
A comprehensive look at state-of-the-art ADP theory and real-world applications This book fills a gap in the literature by providing a theoretical framework for integrating techniques from adaptive dynamic programming (ADP) and modern nonlinear control to address data-driven optimal control design challenges arising from both parametric and dynamic uncertainties. Traditional model-based approaches leave much to be desired when addressing the challenges posed by the ever-increasing complexity of real-world engineering systems. An alternative which has received much interest in recent years are biologically-inspired approaches, primarily RADP. Despite their growing popularity worldwide, until now books on ADP have focused nearly exclusively on analysis and design, with scant consideration given to how it can be applied to address robustness issues, a new challenge arising from dynamic uncertainties encountered in common engineering problems. Robust Adaptive Dynamic Programming zeros in on the practical concerns of engineers. The authors develop RADP theory from linear systems to partially-linear, large-scale, and completely nonlinear systems. They provide in-depth coverage of state-of-the-art applications in power systems, supplemented with numerous real-world examples implemented in MATLAB. They also explore fascinating reverse engineering topics, such how ADP theory can be applied to the study of the human brain and cognition. In addition, the book: Covers the latest developments in RADP theory and applications for solving a range of systems’ complexity problems Explores multiple real-world implementations in power systems with illustrative examples backed up by reusable MATLAB code and Simulink block sets Provides an overview of nonlinear control, machine learning, and dynamic control Features discussions of novel applications for RADP theory, including an entire chapter on how it can be used as a computational mechanism of human movement control Robust Adaptive Dynamic Programming is both a valuable working resource and an intriguing exploration of contemporary ADP theory and applications for practicing engineers and advanced students in systems theory, control engineering, computer science, and applied mathematics.
Publisher: John Wiley & Sons
ISBN: 1119132657
Category : Science
Languages : en
Pages : 220
Book Description
A comprehensive look at state-of-the-art ADP theory and real-world applications This book fills a gap in the literature by providing a theoretical framework for integrating techniques from adaptive dynamic programming (ADP) and modern nonlinear control to address data-driven optimal control design challenges arising from both parametric and dynamic uncertainties. Traditional model-based approaches leave much to be desired when addressing the challenges posed by the ever-increasing complexity of real-world engineering systems. An alternative which has received much interest in recent years are biologically-inspired approaches, primarily RADP. Despite their growing popularity worldwide, until now books on ADP have focused nearly exclusively on analysis and design, with scant consideration given to how it can be applied to address robustness issues, a new challenge arising from dynamic uncertainties encountered in common engineering problems. Robust Adaptive Dynamic Programming zeros in on the practical concerns of engineers. The authors develop RADP theory from linear systems to partially-linear, large-scale, and completely nonlinear systems. They provide in-depth coverage of state-of-the-art applications in power systems, supplemented with numerous real-world examples implemented in MATLAB. They also explore fascinating reverse engineering topics, such how ADP theory can be applied to the study of the human brain and cognition. In addition, the book: Covers the latest developments in RADP theory and applications for solving a range of systems’ complexity problems Explores multiple real-world implementations in power systems with illustrative examples backed up by reusable MATLAB code and Simulink block sets Provides an overview of nonlinear control, machine learning, and dynamic control Features discussions of novel applications for RADP theory, including an entire chapter on how it can be used as a computational mechanism of human movement control Robust Adaptive Dynamic Programming is both a valuable working resource and an intriguing exploration of contemporary ADP theory and applications for practicing engineers and advanced students in systems theory, control engineering, computer science, and applied mathematics.
Nonlinear Control of Dynamic Networks
Author: Tengfei Liu
Publisher: CRC Press
ISBN: 1466584599
Category : Technology & Engineering
Languages : en
Pages : 347
Book Description
Significant progress has been made on nonlinear control systems in the past two decades. However, many of the existing nonlinear control methods cannot be readily used to cope with communication and networking issues without nontrivial modifications. For example, small quantization errors may cause the performance of a "well-designed" nonlinear control system to deteriorate. Motivated by the need for new tools to solve complex problems resulting from smart power grids, biological processes, distributed computing networks, transportation networks, robotic systems, and other cutting-edge control applications, Nonlinear Control of Dynamic Networks tackles newly arising theoretical and real-world challenges for stability analysis and control design, including nonlinearity, dimensionality, uncertainty, and information constraints as well as behaviors stemming from quantization, data-sampling, and impulses. Delivering a systematic review of the nonlinear small-gain theorems, the text: Supplies novel cyclic-small-gain theorems for large-scale nonlinear dynamic networks Offers a cyclic-small-gain framework for nonlinear control with static or dynamic quantization Contains a combination of cyclic-small-gain and set-valued map designs for robust control of nonlinear uncertain systems subject to sensor noise Presents a cyclic-small-gain result in directed graphs and distributed control of nonlinear multi-agent systems with fixed or dynamically changing topology Based on the authors’ recent research, Nonlinear Control of Dynamic Networks provides a unified framework for robust, quantized, and distributed control under information constraints. Suggesting avenues for further exploration, the book encourages readers to take into consideration more communication and networking issues in control designs to better handle the arising challenges.
Publisher: CRC Press
ISBN: 1466584599
Category : Technology & Engineering
Languages : en
Pages : 347
Book Description
Significant progress has been made on nonlinear control systems in the past two decades. However, many of the existing nonlinear control methods cannot be readily used to cope with communication and networking issues without nontrivial modifications. For example, small quantization errors may cause the performance of a "well-designed" nonlinear control system to deteriorate. Motivated by the need for new tools to solve complex problems resulting from smart power grids, biological processes, distributed computing networks, transportation networks, robotic systems, and other cutting-edge control applications, Nonlinear Control of Dynamic Networks tackles newly arising theoretical and real-world challenges for stability analysis and control design, including nonlinearity, dimensionality, uncertainty, and information constraints as well as behaviors stemming from quantization, data-sampling, and impulses. Delivering a systematic review of the nonlinear small-gain theorems, the text: Supplies novel cyclic-small-gain theorems for large-scale nonlinear dynamic networks Offers a cyclic-small-gain framework for nonlinear control with static or dynamic quantization Contains a combination of cyclic-small-gain and set-valued map designs for robust control of nonlinear uncertain systems subject to sensor noise Presents a cyclic-small-gain result in directed graphs and distributed control of nonlinear multi-agent systems with fixed or dynamically changing topology Based on the authors’ recent research, Nonlinear Control of Dynamic Networks provides a unified framework for robust, quantized, and distributed control under information constraints. Suggesting avenues for further exploration, the book encourages readers to take into consideration more communication and networking issues in control designs to better handle the arising challenges.
Hybrid Dynamical Systems
Author: Rafal Goebel
Publisher: Princeton University Press
ISBN: 1400842638
Category : Mathematics
Languages : en
Pages : 227
Book Description
Hybrid dynamical systems exhibit continuous and instantaneous changes, having features of continuous-time and discrete-time dynamical systems. Filled with a wealth of examples to illustrate concepts, this book presents a complete theory of robust asymptotic stability for hybrid dynamical systems that is applicable to the design of hybrid control algorithms--algorithms that feature logic, timers, or combinations of digital and analog components. With the tools of modern mathematical analysis, Hybrid Dynamical Systems unifies and generalizes earlier developments in continuous-time and discrete-time nonlinear systems. It presents hybrid system versions of the necessary and sufficient Lyapunov conditions for asymptotic stability, invariance principles, and approximation techniques, and examines the robustness of asymptotic stability, motivated by the goal of designing robust hybrid control algorithms. This self-contained and classroom-tested book requires standard background in mathematical analysis and differential equations or nonlinear systems. It will interest graduate students in engineering as well as students and researchers in control, computer science, and mathematics.
Publisher: Princeton University Press
ISBN: 1400842638
Category : Mathematics
Languages : en
Pages : 227
Book Description
Hybrid dynamical systems exhibit continuous and instantaneous changes, having features of continuous-time and discrete-time dynamical systems. Filled with a wealth of examples to illustrate concepts, this book presents a complete theory of robust asymptotic stability for hybrid dynamical systems that is applicable to the design of hybrid control algorithms--algorithms that feature logic, timers, or combinations of digital and analog components. With the tools of modern mathematical analysis, Hybrid Dynamical Systems unifies and generalizes earlier developments in continuous-time and discrete-time nonlinear systems. It presents hybrid system versions of the necessary and sufficient Lyapunov conditions for asymptotic stability, invariance principles, and approximation techniques, and examines the robustness of asymptotic stability, motivated by the goal of designing robust hybrid control algorithms. This self-contained and classroom-tested book requires standard background in mathematical analysis and differential equations or nonlinear systems. It will interest graduate students in engineering as well as students and researchers in control, computer science, and mathematics.
Event-Triggered Sliding Mode Control
Author: Bijnan Bandyopadhyay
Publisher: Springer
ISBN: 3319742191
Category : Technology & Engineering
Languages : en
Pages : 139
Book Description
This edited monograph provides a comprehensive and in-depth analysis of sliding mode control, focusing on event-triggered implementation. The technique allows to prefix the steady-state bounds of the system, and this is independent of any boundary disturbances. The idea of event-triggered SMC is developed for both single input / single output and multi-input / multi-output linear systems. Moreover, the reader learns how to apply this method to nonlinear systems. The book primarily addresses research experts in the field of sliding mode control, but the book may also be beneficial for graduate students.
Publisher: Springer
ISBN: 3319742191
Category : Technology & Engineering
Languages : en
Pages : 139
Book Description
This edited monograph provides a comprehensive and in-depth analysis of sliding mode control, focusing on event-triggered implementation. The technique allows to prefix the steady-state bounds of the system, and this is independent of any boundary disturbances. The idea of event-triggered SMC is developed for both single input / single output and multi-input / multi-output linear systems. Moreover, the reader learns how to apply this method to nonlinear systems. The book primarily addresses research experts in the field of sliding mode control, but the book may also be beneficial for graduate students.
Constructive Nonlinear Control
Author: R. Sepulchre
Publisher: Springer Science & Business Media
ISBN: 1447109678
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
Constructive Nonlinear Control presents a broad repertoire of constructive nonlinear designs not available in other works by widening the class of systems and design tools. Several streams of nonlinear control theory are merged and directed towards a constructive solution of the feedback stabilization problem. Analysis, geometric and asymptotic concepts are assembled as design tools for a wide variety of nonlinear phenomena and structures. Geometry serves as a guide for the construction of design procedures whilst analysis provides the robustness which geometry lacks. New recursive designs remove earlier restrictions on feedback passivation. Recursive Lyapunov designs for feedback, feedforward and interlaced structures result in feedback systems with optimality properties and stability margins. The design-oriented approach will make this work a valuable tool for all those who have an interest in control theory.
Publisher: Springer Science & Business Media
ISBN: 1447109678
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
Constructive Nonlinear Control presents a broad repertoire of constructive nonlinear designs not available in other works by widening the class of systems and design tools. Several streams of nonlinear control theory are merged and directed towards a constructive solution of the feedback stabilization problem. Analysis, geometric and asymptotic concepts are assembled as design tools for a wide variety of nonlinear phenomena and structures. Geometry serves as a guide for the construction of design procedures whilst analysis provides the robustness which geometry lacks. New recursive designs remove earlier restrictions on feedback passivation. Recursive Lyapunov designs for feedback, feedforward and interlaced structures result in feedback systems with optimality properties and stability margins. The design-oriented approach will make this work a valuable tool for all those who have an interest in control theory.
2020 IEEE 17th India Council International Conference (INDICON)
Author: IEEE Staff
Publisher:
ISBN: 9781728169170
Category :
Languages : en
Pages :
Book Description
INDICON is basically flagship conference of IEEE India Council in the field of Computer Science and Engineering (CSE), Electrical Engineering (EE), Electronics and Communication Engineering (ECE) It is proposed to have several parallel tracks corresponding to each of these three fields Theme of INDICON2020 is Technology Intervention to Build Future Ready Society with the following tracks Track 1 Computer and Information Technology Track 2 Electronics and Nanotechnology Track 3 Power and Energy Track 4 Communications and Signal Processing Track 5 Control and Instrumentation
Publisher:
ISBN: 9781728169170
Category :
Languages : en
Pages :
Book Description
INDICON is basically flagship conference of IEEE India Council in the field of Computer Science and Engineering (CSE), Electrical Engineering (EE), Electronics and Communication Engineering (ECE) It is proposed to have several parallel tracks corresponding to each of these three fields Theme of INDICON2020 is Technology Intervention to Build Future Ready Society with the following tracks Track 1 Computer and Information Technology Track 2 Electronics and Nanotechnology Track 3 Power and Energy Track 4 Communications and Signal Processing Track 5 Control and Instrumentation
Advanced and Optimization Based Sliding Mode Control: Theory and Applications
Author: Antonella Ferrara
Publisher: SIAM
ISBN: 1611975840
Category : Mathematics
Languages : en
Pages : 302
Book Description
A compendium of the authorsÂ’ recently published results, this book discusses sliding mode control of uncertain nonlinear systems, with a particular emphasis on advanced and optimization based algorithms. The authors survey classical sliding mode control theory and introduce four new methods of advanced sliding mode control. They analyze classical theory and advanced algorithms, with numerical results complementing the theoretical treatment. Case studies examine applications of the algorithms to complex robotics and power grid problems. Advanced and Optimization Based Sliding Mode Control: Theory and Applications is the first book to systematize the theory of optimization based higher order sliding mode control and illustrate advanced algorithms and their applications to real problems. It presents systematic treatment of event-triggered and model based event-triggered sliding mode control schemes, including schemes in combination with model predictive control, and presents adaptive algorithms as well as algorithms capable of dealing with state and input constraints. Additionally, the book includes simulations and experimental results obtained by applying the presented control strategies to real complex systems. This book is suitable for students and researchers interested in control theory. It will also be attractive to practitioners interested in implementing the illustrated strategies. It is accessible to anyone with a basic knowledge of control engineering, process physics, and applied mathematics.
Publisher: SIAM
ISBN: 1611975840
Category : Mathematics
Languages : en
Pages : 302
Book Description
A compendium of the authorsÂ’ recently published results, this book discusses sliding mode control of uncertain nonlinear systems, with a particular emphasis on advanced and optimization based algorithms. The authors survey classical sliding mode control theory and introduce four new methods of advanced sliding mode control. They analyze classical theory and advanced algorithms, with numerical results complementing the theoretical treatment. Case studies examine applications of the algorithms to complex robotics and power grid problems. Advanced and Optimization Based Sliding Mode Control: Theory and Applications is the first book to systematize the theory of optimization based higher order sliding mode control and illustrate advanced algorithms and their applications to real problems. It presents systematic treatment of event-triggered and model based event-triggered sliding mode control schemes, including schemes in combination with model predictive control, and presents adaptive algorithms as well as algorithms capable of dealing with state and input constraints. Additionally, the book includes simulations and experimental results obtained by applying the presented control strategies to real complex systems. This book is suitable for students and researchers interested in control theory. It will also be attractive to practitioners interested in implementing the illustrated strategies. It is accessible to anyone with a basic knowledge of control engineering, process physics, and applied mathematics.