Author: Sadok Z. Hougui
Publisher:
ISBN:
Category :
Languages : en
Pages : 388
Book Description
Robust Dynamic Inversion Flight Control
Author: Sadok Z. Hougui
Publisher:
ISBN:
Category :
Languages : en
Pages : 388
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 388
Book Description
Robust Flight Control
Author: Jean-Francois Magni
Publisher: Springer
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 670
Book Description
In October 1994, 22 organisations throughout Europe accepted a challenge to solve a specific robust flight control design problem. The results of that design challenge, presented at the GARTEUR Specialists' Workshop in Toulouse, France in April 1997, are reported here. Two flight control benchmarks are considered, based on the automatic landing phase of a large cargo aircraft and on the control of a military aircraft. Methods applied include: classical control; multi-objective optimisation; eigenstructure assignment; modal multi-model approach; LQ, Lyapunov and H¿-techniques; ¿-synthesis; nonlinear dynamic inversion; robust inverse dynamics estimation; model predictive control and following; and fuzzy control. Involved in the definition of the benchmarks and the evaluation process have been representatives from the European aeronautical industry, bringing a strong link with flight control law design practice.
Publisher: Springer
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 670
Book Description
In October 1994, 22 organisations throughout Europe accepted a challenge to solve a specific robust flight control design problem. The results of that design challenge, presented at the GARTEUR Specialists' Workshop in Toulouse, France in April 1997, are reported here. Two flight control benchmarks are considered, based on the automatic landing phase of a large cargo aircraft and on the control of a military aircraft. Methods applied include: classical control; multi-objective optimisation; eigenstructure assignment; modal multi-model approach; LQ, Lyapunov and H¿-techniques; ¿-synthesis; nonlinear dynamic inversion; robust inverse dynamics estimation; model predictive control and following; and fuzzy control. Involved in the definition of the benchmarks and the evaluation process have been representatives from the European aeronautical industry, bringing a strong link with flight control law design practice.
Automatic Control of Aircraft and Missiles
Author: John H. Blakelock
Publisher: John Wiley & Sons
ISBN: 9780471506515
Category : Technology & Engineering
Languages : en
Pages : 668
Book Description
This Second Edition continues the fine tradition of its predecessor by exploring the various automatic control systems in aircraft and on board missiles. Considerably expanded and updated, it now includes new or additional material on: the effectiveness of beta-beta feedback as a method of obtaining coordination during turns using the F-15 as the aircraft model; the root locus analysis of a generic acceleration autopilot used in many air-to-air and surface-to-air guided missiles; the guidance systems of the AIM-9L Sidewinder as well as bank-to-turn missiles; various types of guidance, including proportional navigation and line-of-sight and lead-angle command guidance; the coupling of the output of a director fire control system into the autopilot; the analysis of multivariable control systems; and methods for modeling the human pilot, plus the integration of the human pilot into an aircraft flight control system. Also features many new additions to the appendices.
Publisher: John Wiley & Sons
ISBN: 9780471506515
Category : Technology & Engineering
Languages : en
Pages : 668
Book Description
This Second Edition continues the fine tradition of its predecessor by exploring the various automatic control systems in aircraft and on board missiles. Considerably expanded and updated, it now includes new or additional material on: the effectiveness of beta-beta feedback as a method of obtaining coordination during turns using the F-15 as the aircraft model; the root locus analysis of a generic acceleration autopilot used in many air-to-air and surface-to-air guided missiles; the guidance systems of the AIM-9L Sidewinder as well as bank-to-turn missiles; various types of guidance, including proportional navigation and line-of-sight and lead-angle command guidance; the coupling of the output of a director fire control system into the autopilot; the analysis of multivariable control systems; and methods for modeling the human pilot, plus the integration of the human pilot into an aircraft flight control system. Also features many new additions to the appendices.
Fault Tolerant Flight Control
Author: Christopher Edwards
Publisher: Springer
ISBN: 3642116906
Category : Technology & Engineering
Languages : en
Pages : 589
Book Description
Written by leading experts in the field, this book provides the state-of-the-art in terms of fault tolerant control applicable to civil aircraft. The book consists of five parts and includes online material.
Publisher: Springer
ISBN: 3642116906
Category : Technology & Engineering
Languages : en
Pages : 589
Book Description
Written by leading experts in the field, this book provides the state-of-the-art in terms of fault tolerant control applicable to civil aircraft. The book consists of five parts and includes online material.
Aircraft Control and Simulation
Author: Brian L. Stevens
Publisher: John Wiley & Sons
ISBN: 1118870972
Category : Technology & Engineering
Languages : en
Pages : 768
Book Description
Get a complete understanding of aircraft control and simulation Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems, Third Edition is a comprehensive guide to aircraft control and simulation. This updated text covers flight control systems, flight dynamics, aircraft modeling, and flight simulation from both classical design and modern perspectives, as well as two new chapters on the modeling, simulation, and adaptive control of unmanned aerial vehicles. With detailed examples, including relevant MATLAB calculations and FORTRAN codes, this approachable yet detailed reference also provides access to supplementary materials, including chapter problems and an instructor's solution manual. Aircraft control, as a subject area, combines an understanding of aerodynamics with knowledge of the physical systems of an aircraft. The ability to analyze the performance of an aircraft both in the real world and in computer-simulated flight is essential to maintaining proper control and function of the aircraft. Keeping up with the skills necessary to perform this analysis is critical for you to thrive in the aircraft control field. Explore a steadily progressing list of topics, including equations of motion and aerodynamics, classical controls, and more advanced control methods Consider detailed control design examples using computer numerical tools and simulation examples Understand control design methods as they are applied to aircraft nonlinear math models Access updated content about unmanned aircraft (UAVs) Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems, Third Edition is an essential reference for engineers and designers involved in the development of aircraft and aerospace systems and computer-based flight simulations, as well as upper-level undergraduate and graduate students studying mechanical and aerospace engineering.
Publisher: John Wiley & Sons
ISBN: 1118870972
Category : Technology & Engineering
Languages : en
Pages : 768
Book Description
Get a complete understanding of aircraft control and simulation Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems, Third Edition is a comprehensive guide to aircraft control and simulation. This updated text covers flight control systems, flight dynamics, aircraft modeling, and flight simulation from both classical design and modern perspectives, as well as two new chapters on the modeling, simulation, and adaptive control of unmanned aerial vehicles. With detailed examples, including relevant MATLAB calculations and FORTRAN codes, this approachable yet detailed reference also provides access to supplementary materials, including chapter problems and an instructor's solution manual. Aircraft control, as a subject area, combines an understanding of aerodynamics with knowledge of the physical systems of an aircraft. The ability to analyze the performance of an aircraft both in the real world and in computer-simulated flight is essential to maintaining proper control and function of the aircraft. Keeping up with the skills necessary to perform this analysis is critical for you to thrive in the aircraft control field. Explore a steadily progressing list of topics, including equations of motion and aerodynamics, classical controls, and more advanced control methods Consider detailed control design examples using computer numerical tools and simulation examples Understand control design methods as they are applied to aircraft nonlinear math models Access updated content about unmanned aircraft (UAVs) Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems, Third Edition is an essential reference for engineers and designers involved in the development of aircraft and aerospace systems and computer-based flight simulations, as well as upper-level undergraduate and graduate students studying mechanical and aerospace engineering.
Flight Dynamics
Author: Robert F. Stengel
Publisher: Princeton University Press
ISBN: 0691237042
Category : Science
Languages : en
Pages : 914
Book Description
An updated and expanded new edition of an authoritative book on flight dynamics and control system design for all types of current and future fixed-wing aircraft Since it was first published, Flight Dynamics has offered a new approach to the science and mathematics of aircraft flight, unifying principles of aeronautics with contemporary systems analysis. Now updated and expanded, this authoritative book by award-winning aeronautics engineer Robert Stengel presents traditional material in the context of modern computational tools and multivariable methods. Special attention is devoted to models and techniques for analysis, simulation, evaluation of flying qualities, and robust control system design. Using common notation and not assuming a strong background in aeronautics, Flight Dynamics will engage a wide variety of readers, including aircraft designers, flight test engineers, researchers, instructors, and students. It introduces principles, derivations, and equations of flight dynamics as well as methods of flight control design with frequent reference to MATLAB functions and examples. Topics include aerodynamics, propulsion, structures, flying qualities, flight control, and the atmospheric and gravitational environment. The second edition of Flight Dynamics features up-to-date examples; a new chapter on control law design for digital fly-by-wire systems; new material on propulsion, aerodynamics of control surfaces, and aeroelastic control; many more illustrations; and text boxes that introduce general mathematical concepts. Features a fluid, progressive presentation that aids informal and self-directed study Provides a clear, consistent notation that supports understanding, from elementary to complicated concepts Offers a comprehensive blend of aerodynamics, dynamics, and control Presents a unified introduction of control system design, from basics to complex methods Includes links to online MATLAB software written by the author that supports the material covered in the book
Publisher: Princeton University Press
ISBN: 0691237042
Category : Science
Languages : en
Pages : 914
Book Description
An updated and expanded new edition of an authoritative book on flight dynamics and control system design for all types of current and future fixed-wing aircraft Since it was first published, Flight Dynamics has offered a new approach to the science and mathematics of aircraft flight, unifying principles of aeronautics with contemporary systems analysis. Now updated and expanded, this authoritative book by award-winning aeronautics engineer Robert Stengel presents traditional material in the context of modern computational tools and multivariable methods. Special attention is devoted to models and techniques for analysis, simulation, evaluation of flying qualities, and robust control system design. Using common notation and not assuming a strong background in aeronautics, Flight Dynamics will engage a wide variety of readers, including aircraft designers, flight test engineers, researchers, instructors, and students. It introduces principles, derivations, and equations of flight dynamics as well as methods of flight control design with frequent reference to MATLAB functions and examples. Topics include aerodynamics, propulsion, structures, flying qualities, flight control, and the atmospheric and gravitational environment. The second edition of Flight Dynamics features up-to-date examples; a new chapter on control law design for digital fly-by-wire systems; new material on propulsion, aerodynamics of control surfaces, and aeroelastic control; many more illustrations; and text boxes that introduce general mathematical concepts. Features a fluid, progressive presentation that aids informal and self-directed study Provides a clear, consistent notation that supports understanding, from elementary to complicated concepts Offers a comprehensive blend of aerodynamics, dynamics, and control Presents a unified introduction of control system design, from basics to complex methods Includes links to online MATLAB software written by the author that supports the material covered in the book
L1 Adaptive Control Theory
Author: Naira Hovakimyan
Publisher: SIAM
ISBN: 0898717043
Category : Science
Languages : en
Pages : 333
Book Description
Contains results not yet published in technical journals and conference proceedings.
Publisher: SIAM
ISBN: 0898717043
Category : Science
Languages : en
Pages : 333
Book Description
Contains results not yet published in technical journals and conference proceedings.
Flight Stability and Automatic Control
Author: Robert C. Nelson
Publisher:
ISBN:
Category : History
Languages : en
Pages : 464
Book Description
This edition of this this flight stability and controls guide features an unintimidating math level, full coverage of terminology, and expanded discussions of classical to modern control theory and autopilot designs. Extensive examples, problems, and historical notes, make this concise book a vital addition to the engineer's library.
Publisher:
ISBN:
Category : History
Languages : en
Pages : 464
Book Description
This edition of this this flight stability and controls guide features an unintimidating math level, full coverage of terminology, and expanded discussions of classical to modern control theory and autopilot designs. Extensive examples, problems, and historical notes, make this concise book a vital addition to the engineer's library.
F-35A Lightning II
Author: Marty Gitlin
Publisher: Little Mitchie
ISBN: 1545757682
Category : Juvenile Nonfiction
Languages : en
Pages : 24
Book Description
The U.S. Air Force wanted an upgrade. It wanted a better fighter jet. One that could stay hidden from the enemy. One that could attack and destroy. One that could defend itself. One that could keep pilots safe. Keep U.S. ground troops safe. Keep Americans safe. Keep the world safe. A jet fighter that all friendly nations could use. This book is all about that aircraft. Part of the America's Fighter Jets series: F-35A Lightning II puts readers into the sky with the jet. This fun book gives young readers insight on how the F-35A Lightning II achieved its goals. And why fewer of them might be made in the future.
Publisher: Little Mitchie
ISBN: 1545757682
Category : Juvenile Nonfiction
Languages : en
Pages : 24
Book Description
The U.S. Air Force wanted an upgrade. It wanted a better fighter jet. One that could stay hidden from the enemy. One that could attack and destroy. One that could defend itself. One that could keep pilots safe. Keep U.S. ground troops safe. Keep Americans safe. Keep the world safe. A jet fighter that all friendly nations could use. This book is all about that aircraft. Part of the America's Fighter Jets series: F-35A Lightning II puts readers into the sky with the jet. This fun book gives young readers insight on how the F-35A Lightning II achieved its goals. And why fewer of them might be made in the future.
Robust Multivariable Flight Control
Author: Richard J. Adams
Publisher: Springer Science & Business Media
ISBN: 1447121112
Category : Technology & Engineering
Languages : en
Pages : 175
Book Description
Manual flight control system design for fighter aircraft is one of the most demanding problems in automatic control. Fighter aircraft dynamics generally have highly coupled uncertain and nonlinear dynamics. Multivariable control design techniques offer a solution to this problem. Robust Multivariable Flight Control provides the background, theory and examples for full envelope manual flight control system design. It gives a versatile framework for the application of advanced multivariable control theory to aircraft control problems. Two design case studies are presented for the manual flight control of lateral/directional axes of the VISTA-F-16 test vehicle and an F-18 trust vectoring system. They demonstrate the interplay between theory and the physical features of the systems.
Publisher: Springer Science & Business Media
ISBN: 1447121112
Category : Technology & Engineering
Languages : en
Pages : 175
Book Description
Manual flight control system design for fighter aircraft is one of the most demanding problems in automatic control. Fighter aircraft dynamics generally have highly coupled uncertain and nonlinear dynamics. Multivariable control design techniques offer a solution to this problem. Robust Multivariable Flight Control provides the background, theory and examples for full envelope manual flight control system design. It gives a versatile framework for the application of advanced multivariable control theory to aircraft control problems. Two design case studies are presented for the manual flight control of lateral/directional axes of the VISTA-F-16 test vehicle and an F-18 trust vectoring system. They demonstrate the interplay between theory and the physical features of the systems.