Robust Cluster Analysis and Variable Selection

Robust Cluster Analysis and Variable Selection PDF Author: Gunter Ritter
Publisher: CRC Press
ISBN: 1439857962
Category : Computers
Languages : en
Pages : 397

Get Book Here

Book Description
Clustering remains a vibrant area of research in statistics. Although there are many books on this topic, there are relatively few that are well founded in the theoretical aspects. In Robust Cluster Analysis and Variable Selection, Gunter Ritter presents an overview of the theory and applications of probabilistic clustering and variable selection, synthesizing the key research results of the last 50 years. The author focuses on the robust clustering methods he found to be the most useful on simulated data and real-time applications. The book provides clear guidance for the varying needs of both applications, describing scenarios in which accuracy and speed are the primary goals. Robust Cluster Analysis and Variable Selection includes all of the important theoretical details, and covers the key probabilistic models, robustness issues, optimization algorithms, validation techniques, and variable selection methods. The book illustrates the different methods with simulated data and applies them to real-world data sets that can be easily downloaded from the web. This provides you with guidance in how to use clustering methods as well as applicable procedures and algorithms without having to understand their probabilistic fundamentals.

Robust Cluster Analysis and Variable Selection

Robust Cluster Analysis and Variable Selection PDF Author: Gunter Ritter
Publisher: CRC Press
ISBN: 1439857962
Category : Computers
Languages : en
Pages : 397

Get Book Here

Book Description
Clustering remains a vibrant area of research in statistics. Although there are many books on this topic, there are relatively few that are well founded in the theoretical aspects. In Robust Cluster Analysis and Variable Selection, Gunter Ritter presents an overview of the theory and applications of probabilistic clustering and variable selection, synthesizing the key research results of the last 50 years. The author focuses on the robust clustering methods he found to be the most useful on simulated data and real-time applications. The book provides clear guidance for the varying needs of both applications, describing scenarios in which accuracy and speed are the primary goals. Robust Cluster Analysis and Variable Selection includes all of the important theoretical details, and covers the key probabilistic models, robustness issues, optimization algorithms, validation techniques, and variable selection methods. The book illustrates the different methods with simulated data and applies them to real-world data sets that can be easily downloaded from the web. This provides you with guidance in how to use clustering methods as well as applicable procedures and algorithms without having to understand their probabilistic fundamentals.

Model-Based Clustering and Classification for Data Science

Model-Based Clustering and Classification for Data Science PDF Author: Charles Bouveyron
Publisher: Cambridge University Press
ISBN: 110849420X
Category : Business & Economics
Languages : en
Pages : 446

Get Book Here

Book Description
Colorful example-rich introduction to the state-of-the-art for students in data science, as well as researchers and practitioners.

Handbook of Applied Multivariate Statistics and Mathematical Modeling

Handbook of Applied Multivariate Statistics and Mathematical Modeling PDF Author: Howard E.A. Tinsley
Publisher: Academic Press
ISBN: 0080533566
Category : Mathematics
Languages : en
Pages : 751

Get Book Here

Book Description
Multivariate statistics and mathematical models provide flexible and powerful tools essential in most disciplines. Nevertheless, many practicing researchers lack an adequate knowledge of these techniques, or did once know the techniques, but have not been able to keep abreast of new developments. The Handbook of Applied Multivariate Statistics and Mathematical Modeling explains the appropriate uses of multivariate procedures and mathematical modeling techniques, and prescribe practices that enable applied researchers to use these procedures effectively without needing to concern themselves with the mathematical basis. The Handbook emphasizes using models and statistics as tools. The objective of the book is to inform readers about which tool to use to accomplish which task. Each chapter begins with a discussion of what kinds of questions a particular technique can and cannot answer. As multivariate statistics and modeling techniques are useful across disciplines, these examples include issues of concern in biological and social sciences as well as the humanities.

Handbook of Cluster Analysis

Handbook of Cluster Analysis PDF Author: Christian Hennig
Publisher: CRC Press
ISBN: 1466551895
Category : Business & Economics
Languages : en
Pages : 753

Get Book Here

Book Description
Handbook of Cluster Analysis provides a comprehensive and unified account of the main research developments in cluster analysis. Written by active, distinguished researchers in this area, the book helps readers make informed choices of the most suitable clustering approach for their problem and make better use of existing cluster analysis tools.The

Model-Based Clustering and Classification for Data Science

Model-Based Clustering and Classification for Data Science PDF Author: Charles Bouveyron
Publisher: Cambridge University Press
ISBN: 1108640591
Category : Mathematics
Languages : en
Pages : 447

Get Book Here

Book Description
Cluster analysis finds groups in data automatically. Most methods have been heuristic and leave open such central questions as: how many clusters are there? Which method should I use? How should I handle outliers? Classification assigns new observations to groups given previously classified observations, and also has open questions about parameter tuning, robustness and uncertainty assessment. This book frames cluster analysis and classification in terms of statistical models, thus yielding principled estimation, testing and prediction methods, and sound answers to the central questions. It builds the basic ideas in an accessible but rigorous way, with extensive data examples and R code; describes modern approaches to high-dimensional data and networks; and explains such recent advances as Bayesian regularization, non-Gaussian model-based clustering, cluster merging, variable selection, semi-supervised and robust classification, clustering of functional data, text and images, and co-clustering. Written for advanced undergraduates in data science, as well as researchers and practitioners, it assumes basic knowledge of multivariate calculus, linear algebra, probability and statistics.

Cluster Analysis for Applications

Cluster Analysis for Applications PDF Author: Michael R. Anderberg
Publisher: Academic Press
ISBN: 1483191397
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
Cluster Analysis for Applications deals with methods and various applications of cluster analysis. Topics covered range from variables and scales to measures of association among variables and among data units. Conceptual problems in cluster analysis are discussed, along with hierarchical and non-hierarchical clustering methods. The necessary elements of data analysis, statistics, cluster analysis, and computer implementation are integrated vertically to cover the complete path from raw data to a finished analysis. Comprised of 10 chapters, this book begins with an introduction to the subject of cluster analysis and its uses as well as category sorting problems and the need for cluster analysis algorithms. The next three chapters give a detailed account of variables and association measures, with emphasis on strategies for dealing with problems containing variables of mixed types. Subsequent chapters focus on the central techniques of cluster analysis with particular reference to computational considerations; interpretation of clustering results; and techniques and strategies for making the most effective use of cluster analysis. The final chapter suggests an approach for the evaluation of alternative clustering methods. The presentation is capped with a complete set of implementing computer programs listed in the Appendices to make the use of cluster analysis as painless and free of mechanical error as is possible. This monograph is intended for students and workers who have encountered the notion of cluster analysis.

Introduction to High-Dimensional Statistics

Introduction to High-Dimensional Statistics PDF Author: Christophe Giraud
Publisher: CRC Press
ISBN: 1482237954
Category : Business & Economics
Languages : en
Pages : 270

Get Book Here

Book Description
Ever-greater computing technologies have given rise to an exponentially growing volume of data. Today massive data sets (with potentially thousands of variables) play an important role in almost every branch of modern human activity, including networks, finance, and genetics. However, analyzing such data has presented a challenge for statisticians

Multilevel Modeling Using Mplus

Multilevel Modeling Using Mplus PDF Author: Holmes Finch
Publisher: CRC Press
ISBN: 135167840X
Category : Mathematics
Languages : en
Pages : 266

Get Book Here

Book Description
This book is designed primarily for upper level undergraduate and graduate level students taking a course in multilevel modelling and/or statistical modelling with a large multilevel modelling component. The focus is on presenting the theory and practice of major multilevel modelling techniques in a variety of contexts, using Mplus as the software tool, and demonstrating the various functions available for these analyses in Mplus, which is widely used by researchers in various fields, including most of the social sciences. In particular, Mplus offers users a wide array of tools for latent variable modelling, including for multilevel data.

Preparing for the Next Financial Crisis

Preparing for the Next Financial Crisis PDF Author: Esa Jokivuolle
Publisher: Cambridge University Press
ISBN: 1316949230
Category : Business & Economics
Languages : en
Pages : 205

Get Book Here

Book Description
In the years since the subprime financial crisis of 2007–2011, we have learned a number of important lessons about the crisis, and have subsequently applied appropriate legislation, such as increased capital ratios and systematic stress testing, in order to combat it. However, it would be naive to suggest that such measures have put an end to the possibility of future crises. In this book, senior figures in economics, risk Management, and the banking sector use active research and policy debates to offer a wide perspective on what the next financial crisis may look like and what can be done about it from a regulatory point of view. By first exploring issues of macroeconomic policy, and then studying cutting-edge methodologies, challenging important aspects of testing financial practice, this book will be an essential read for all those studying and researching financial crises, financial regulation and macroprudential policy-making.

An Introduction to Regression Graphics

An Introduction to Regression Graphics PDF Author: R. Dennis Cook
Publisher: John Wiley & Sons
ISBN: 0470317701
Category : Mathematics
Languages : en
Pages : 282

Get Book Here

Book Description
Covers the use of dynamic and interactive computer graphics in linear regression analysis, focusing on analytical graphics. Features new techniques like plot rotation. The authors have composed their own regression code, using Xlisp-Stat language called R-code, which is a nearly complete system for linear regression analysis and can be utilized as the main computer program in a linear regression course. The accompanying disks, for both Macintosh and Windows computers, contain the R-code and Xlisp-Stat. An Instructor's Manual presenting detailed solutions to all the problems in the book is available upon request from the Wiley editorial department.